top of page
Life at CMU Study.jpeg

Life@CMU

Mental health challenges are on the rise among young adults, and we need more information about the college student experience. In Spring semester 2017 and again in Spring semester 2018 we followed college students at Carnegie Mellon University to better understand their experience. Throughout the semester our students wore Fitbits, provided sensor-based smartphone measures using the Aware app, completed short smartphone surveys in daily life using Ecological Momentary Assessment, and completed questionnaires. Our project provides one of the most in-depth assessments of the student experience ever conducted. Our team has also extended our multi-modal assessment approach to student samples at the University of Washington. Collectively our work aims to help understand and improve young adult mental health, resilience, and academic success. We thank the Carnegie Mellon University Task Force on the Student Experience and the Provost’s Office for their generous support and funding to conduct this work.

LIFE_CMU David.jpeg

Principal Investigator

DAVID CRESWELL

PUBLICATIONS

Yan, R., Liu, X., Dutcher, J. M., Tumminia, M. J., Villalba, D., Cohen, S., Creswell, J. D., Creswell, K., Mankoff, J., Dey, A. K., & Doryab, A. (2024). Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative Study. JMIR AI, 3(1), e47194. 

Beloborodova, P., Dutcher, J. M., Villalba, D. K., Tumminia, M. J. Doryab, A., Creswell, K., Cohen, S., Sefdigar, Y., Seo, W., Mankoff, J., Dey, A.,  Creswell, J. D., & Brown, K. W. (2024). College students’ daily mind wandering is related to lower social well-being. Journal of American College Health, 1-13. 

Creswell, J. D., Tumminia, M. J., Price, S., Sefidgar, Y., Cohen, S., Ren, Y., Brown, J., Dey, A. K., Dutcher, J. M., Villalba, D., Mankoff, J., Xu, X., Creswell, K., Doryab, A., Mattingly, S., Striegel, A., Hachen, D., Martinez, G., & Lovett, M. C. (2023). Nightly sleep duration predicts grade point average in the first year of college. Proceedings of the National Academy of Sciences of the United States of America, 120(8), e2209123120.

Dutcher, J.M., Lederman, J., Jain, M., Price, S., Kumar, A., Villalba, D.K., Tumminia, M.J., Doryab, A.,Creswell, K.G., Mankoff, J., Cohen, S., Dey, A., & Creswell, J.D. (2022). Lack of belonging predicts depressive symptomatology in college students. Psychological Science, 33(7),1048-1067.

Yan, R., Lio, Xinwen, Dutcher, J.M., Tumminia, M.J., Villalba, D.K., Cohen, S., Creswell, J.D., Creswell, K.G., Mankoff, J., Dey, A., & Doryab, A. (2022). A Computational Framework for Modeling Biobehavioral Rhythms from Mobile and Wearable Data Streams. Transactions on Intelligent Systems and Technology, 13(3), Article 47.

Chikersal, P., Doryab, A., Tumminia, M., Villalba, D. K., Dutcher, J. M, Liu, X., Cohen, S., Creswell. K., Mankoff, J., Creswell., J. D., Goel, M., Dey., A. (2021). Detecting depression and predicting its onset using longitudinal symptoms captured by passive sensing: a machine learning approach with robust feature selection. ACM Transactions on Computer-Human Interaction (TOCHI), 28(1), Article 3.

Xu, X., Chikersal, P., Dutcher, J. M., Tumminia, M., Villalba, D. K., Cohen, S., Creswell, J. D., Creswell, K. G., Doryab, A., Nurius, P., Riskin, E. A., Dey, A. K., & Mankoff, J. (2019). Leveraging collaborative-filtering for personalized behavior modeling: A case study of depression detection among college students. Proceedings of ACM Interaction Mobile Wearable Ubiquitous Technologies, 3, 116.

Doryab, A., Villalba, D., Chikersal, P., Dutcher, J.M., Tumminia, M., Liu, X., Cohen, S., Creswell, K.G., Mankoff, J., Creswell, J.D., & Dey, A. (2019). Identifying behavioral phenotypes of loneliness and social isolation with passive sensing: a three-fold analysis. Journal of Medical Internet Research.

Xu, X., Chikersal, P., Doryab, A., Villalba, D.K., Dutcher, J.M., Tumminia, M.J., Althoff, T., Cohen, S., Creswell, K.G., Creswell, J.D., Mankoff, J., & Dey, A.K. (2019). Leveraging routine behavior and contextually-filtered features for depression detection among college students. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3, 116.

Chin, B.N., Price, S., Dutcher, J.M., Villalba, D.K., Tumminia, M.J., Creswell, K.G., Dey, A.K., &; Creswell, J.D. (under review). Actigraphic sleep health disparities between Asian and White college students.


bottom of page