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Abstract

Many chronic health concerns (obesity, addiction, stress, chronic pain and depression) have
garnered recent attention for their increasing frequency, intractability, and serious health
consequences. Because they are often difficult to treat and there are not always effective
pharmacological treatments for these conditions, many patients are pursuing behavioral
interventions for these conditions. Experimental behavioral intervention studies have shown some
efficacy for health, but the mechanisms for these treatments are not well understood. Health
Neuroscience is a burgeoning field that seeks to link neural function and structure with physical
and mental health. Through this lens, initial studies have begun to investigate how behavioral
interventions modulate neural function in ways that lead to improvements in health markers and
outcomes. Here, we provide a review of these studies in terms of how they modulate key
neurobiological systems, and how modulation of these systems relates to physical health and
disease outcomes. We conclude with discussion of opportunities for future research in this
promising area of study.

Graphical abstract

Many chronic health concerns (obesity, addiction, stress, chronic pain and depression) have
garnered recent attention for their increasing frequency, intractability, and serious health
consequences. Initial studies have begun to investigate how behavioral interventions, many
patients are pursuing for these conditions, modulate neural function in ways that lead to
improvements in health markers and outcomes. Here, we provide a review of these studies in terms
of how they modulate key neurobiological systems, and how modulation of these systems relates
to physical health and disease outcomes, and discuss future opportunities.
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Behavioral interventions in health neuroscience

The field of health neuroscience aims to link neural systems with health and disease
outcomes. There has been significant growth in cross sectional and longitudinal studies
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linking the brain with peripheral physiological processes and biomarkers,1-° as well as
health and disease outcomes.5 While this emerging body of work establishes initial
relationships between the brain and markers of health, it is correlational. A key strategy for
advancing a causal science linking neural processes with health is to manipulate brain
activity, and one way to do so is through behavioral interventions. These behavioral
interventions may manipulate brain systems in ways that impact health, aiding in our ability
to make inferences about how changing brain systems relate to changes in health over time.
While the behavioral intervention health neuroscience literature is still in its infancy, this
review describes what we know about how behavioral interventions modulate neural
systems, and how these changes in neural activity relate to health.

This review is organized by neurobiological systems and focuses on studies that explore how
behavioral interventions affect the brain using functional analyses (see Tables 1-4). Thus,
we have included studies that used task-based functional analyses, or those analyses that
assess brain activity during specific tasks, and resting state connectivity, or those analyses
that assess dynamic brain activity while participants are not actively engaged in a specific
task. While there are exemplary studies of how acute manipulations of behavior impact the
brain’-8 and how trait-level tendencies affect brain activity,®-1° this review focuses
exclusively on longer-term behavioral interventions (multiple days or weeks) aimed at
changing the brain and health outcomes. These behavioral interventions include mindfulness
meditation, cognitive behavioral therapy, diet, and exercise interventions, among others.
Furthermore, we have prioritized studies in which functional magnetic resonance imaging
(fFMRI) scans were collected both before and after the intervention to evaluate intervention-
related changes within the same participants, but there are also studies comparing brain
activity at one time point following an intervention compared to a control.11-13 While we
describe clinical samples (e.g., obese individuals, depressed patients, fiboromyalgia patients),
we also highlight work using preclinical samples (e.g., healthy young adults, age-matched
individuals without disease), which provide a meaningful translational step between cross-
sectional or experimental studies and health interventions. After reviewing this emerging
behavioral intervention health neuroscience literature, we conclude with some ideas for
future research.

Plausible neurobiological systems

Basic research has revealed a few critical neurobiological systems that drive health, and are
important candidate neural systems that could be changed with behavioral interventions.
These systems are linked to biology, health behaviors or affective states, and could serve as
potential mediators for intervention effects on health. These candidate neural systems
include the threat and stress system, pain system, reward system, and the self and regulation
system (Fig. 1). It is important to note there is some overlap between these systems, and
some regions play important roles in multiple systems. Furthermore, the role each region
might play in each system may be different, and there may be specificity in spatial location
within the region depending on function (e.g. the central nucleus of the amygdala for stress,
and the basolateral amygdala for reward).14
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Threat and stress system

Pain system

It is well established that the brain coordinates fight-or-flight responses to stress, and this
response plays an important role in survival, but can also increase wear-and-tear on
physiological systems and increase susceptibility to stress-related health and disease
outcomes.® Behavioral interventions may modulate the threat and stress system in two
ways: by buffering stress reactivity responses (turning down activity in limbic structures that
gate the central fight-or-flight stress response), or by increasing top-down regulatory signals
(increasing activity in cortical structures that gate top-down control of central fight-or-flight
stress response). If behavioral interventions can modulate neural threat system dynamics, it
would be expected that mitigating hyperactive or recurrent activation of the threat system
could reduce peripheral stress response cascades and their associated effects on increasing
risk for stress-related disease.16:17

The primary regions involved in stress and threat responding (Fig. 1, panel A) include those
regions that detect threat and stress and those that translate this signal into peripheral stress
responding via the autonomic nervous system (ANS) and the hypothalamic—pituitary—
adrenal (HPA) axis. These regions include the amygdala, dorsal anterior cingulate cortex
(dACC) and the anterior insula (Al), along with regions such as the hypothalamus and
brainstem, which coordinate physiological stress response cascades.® The amygdala is
involved in fear and stress, and plays a role in the HPA axis and ANS responses to threats,
through projections to the hypothalamus and brainstem.1® Moreover, one study has found
that hyperactivation of the amygdala is associated with posttraumatic stress disorder
(PTSD), social phobia and other mental health conditions.2% One role of the dACC is in
conflict detection and affective feelings of distress, including those following from threat or
pain,2! and may affect the SNS arousal and HPA axis activity via projections to the
amygdala and brainstem.22 The subgenual anterior cingulate cortex (SYACC) has also been
implicated in emotional processing, and is linked to mood disorders.2324 The sgACC has
connections with the amygdala and other limbic structures, and research has shown that the
stronger these functional connections, the more physiological stress reactivity to stressors.
25,26 Finally, the hypothalamus and brainstem serve as critical hubs linking higher-level
cortical representations of stress with the generation of peripheral physiological stress
response cascades in the HPA axis272625272416 gnd ANS.27.28 There are some promising
initial studies, described below, which suggest that behavioral interventions can reduce
reactivity and connectivity in regions in the threat system.

Similar to threat and stress, pain is an important survival signal. Indeed, pain is thought to be
a signal to avoid or remove the painful stimulus.2? Experiencing pain thus activates
physiological systems to help mobilize the individual to avoid the painful stimulus, but
chronic neural activation can lead to burdensome hyperactivation of these physiological
systems. Chronic pain conditions are thus marked by negative affect and downstream health
consequences, and behavioral interventions have been shown to be helpful in reducing these
consequences.3%:31 Pain is often divided into four components: nociceptive/sensory signals
that indicate the source and location of pain, perception (how the individual subjectively
experiences the pain), the emotional experience (suffering), and the subsequent behaviors
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(i.e., removing or avoiding the pain stimulus).3 Behavioral interventions are most likely to
affect pain perception and emotions primarily, which could lead to changes in behavioral
and physiological responses to pain.

Experimental and clinical brain mapping work has demonstrated that the sensory, affective
and subsequent emotions of pain interact and rely on overlapping neural regions (Fig. 1,
Panel B). Specifically, nociceptive responses to pain are meditated by regions such as the
somatosensory area, insula and the posterior parietal cortex, followed by arousal and
autonomic activation via amygdala, hypothalamus and the supplementary motor area
(SMA).32 The Al is believed to be involved in interoceptive processes that lead to pain
awareness.33:34 Specifically, the Al can serve to detect physiological arousal, linking pain
signals to pain responding in the brain, via projections to the amygdala.3> The affective
experience of pain seems to be associated with increases in the dACC and Al activity and
subsequent emotions rely on prefrontal cortex (PFC) regions including the medial PFC
(MPFC).21

Reward system

Adaptive behaviors, such as eating, reproduction and social connection, are key to survival
and these important behaviors are reinforced via dopaminergic and opioidergic pathways in
the central nervous system, dubbed the reward system.36 While reinforcement of these
survival behaviors is adaptive when helping achieve homeostasis, sometimes these behaviors
are reinforced past the point of homeostasis leading to obesity, addiction and other health
conditions.3” Behavioral interventions could reduce the reinforcement of unhealthy
behaviors, or help maximize the reinforcement of healthy behaviors via the brain’s reward
system.

The reward system is a well-characterized and conserved mesolimbic dopamine pathway,38
and human neuroimaging research has identified a few key hubs (Fig. 1, Panel C). The
ventromedial PFC (VMPFC) is involved in processing valuation of a stimulus,38 and is
known to inhibit threat and fear responding, including in fear extinction and pain.39-41 The
orbitofrontal cortex (OFC) is also involved in reward-related processing.? (The VMPFC
and OFC are sometimes labeled interchangeably in human neuroimaging studies.) The
ventral striatum (VS) is a collection of regions within the basal ganglia mesolimbic system
including the caudate nucleus, the caudate head, the nucleus accumbens (NAcc), and ventral
portions of the putamen.*3 The VS has connections to the thalamus and hypothalamus
suggesting a plausible pathway from this region to downstream physiology.# Other regions,
including the insula and amygdala, have also been implicated in reward processing.5-47

The regions involved in the reward system can play an important role in biological systems
underlying health, and moreover, reinforce behavior. The reward system serves to reinforce
important survival-related behaviors, but dysregulation in this system is linked to a variety of
poor health outcomes including obesity, PTSD and addiction*8.

Self and regulation system

The “self” has been studied extensively in psychology and refers to a collection of processes
that aid in how an individual understands himself/herself and engages with the world around
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them, including behaviors and processes such as self-awareness, self-knowledge, and self-
control 49. Typically, individuals are motivated to behave in ways that are consistent with
their self-concept,®® and thus self-related processes are often associated with self- and
emotion regulation, necessary strategies for regulating behavior. Indeed, the individual’s
self-concept and regulation behaviors are critically important for mental health outcomes
and important health behaviors. For example, higher self-control is predictive of healthier
eating behaviors and better weight loss,>1 and more positive self-perceptions about aging
lead to more preventative health behaviors and improved functional health in older adults.
52,53 A collection of regions in the brain (described below) have been identified as key
regions involved in self and regulatory processes, and here we refer to this system of regions
as the self and regulation system. Behavioral interventions can modulate the self and
regulation system in important ways for subsequent behavior and health. Interventions could
increase activity in this system, which could lead to better self- and emotion regulation, or
reduce activity in this system to negative self-concepts. Either of these patterns of
modulation within the self and regulation system plausibly leads to adjustments in behaviors
and health outcomes.

The medial PFC (MPFC) is the primary neural region associated with thinking about
oneself, and self-knowledge,>* and this region is linked to subsequent behavior, including
health behaviors.?> Research also implicates the dJACC in detecting conflicting information
or representations of the self.%8 Self-control is an important aspect of reducing (or never
beginning) unhealthy behaviors, and the dorsolateral PFC (DLPFC), has been linked to self-
control and decision making.?6:57 Regions involved in self-regulation include the
dorsomedial PFC (DMPFC), posterior cingulate cortex (PCC), and the VMPFC (Fig. 1,
Panel D).58-60 Beyond self-regulation behaviors, negative affect can also have both
biological and behavioral effects on health, including increases in the sympathetic nervous
system (SNS) activity and impaired decision-making abilities,61:62 emphasizing the
importance of effective emotion regulation arising from the self. The ventrolateral PFC
(VLPFC) has been shown to be one of the central regions involved in emotion regulation,
particularly the right VLPFC.83 Additional emotion regulation regions include DMPFC,
DLPFC and dACC.%3

Some of the most significant advances in behavioral intervention health neuroscience
research consist of links between activation of the self and regulation system and health
behavior outcomes (e.g., smoking).84 Importantly, as we review below behavioral
interventions that affect the self and regulation system (also see Table 4), intervention
research in this area has shown that activity in the neural self and regulation system is
predictive of health behaviors, and that reducing activity to negative self-beliefs may have
important mental health benefits.

Studies linking behavioral interventions, the brain, and health

While the study of behavioral interventions is a relatively new area of health neuroscience,
there are a collection of studies linking intervention effects to proximal health markers and
more distal health and disease outcomes. Here we will review this work, organized by
neurobiological system.
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Behavioral interventions and the threat/stress neural system

Stress is well established to have important links to poor health.1” From the perspective of
neural systems, if a behavioral intervention could effectively reduce the reactivity of this
system, weaken connectivity between regions in this system, or trigger down regulation of
this system, it could mitigate activation of the sympathetic—adrenal-medullary (SAM) and
HPA axis response cascades and the cumulative wear-and-tear they have on physiological
systems and health.15 Studies of interventions have begun to examine these possibilities
using neuroimaging (Table 1).

One way to explore the possibility that behavioral interventions could lead to reduced threat
reactivity is to study the effect of an intervention in a highly stressed population: patients
with PTSD. Typically the amygdala is involved in threat processing and the VMPFC is
involved in facilitating fear extinction.4? Patients with PTSD show enhanced amygdala
activity and reduced PFC activity,5® this exaggerated reactivity and diminished top-down
control suggests dysregulation in the threat system. However, when PTSD patients received
cognitive behavioral therapy (CBT), a 12-week intervention aimed at restructuring unhelpful
cognitive patterns and building coping skills, this dysregulation was altered. Specifically,
PTSD patients after CBT treatment showed an increase in SgACC activity to a threat
reactivity task (viewing threatening faces), an association between increased sgACC activity
and decreased symptoms, and an association between decreased amygdala activity and
decreased symptoms.56 While these results suggest that a behavioral intervention can alter
threat system activity to stress and lead to changes in relevant symptoms, it is not yet clear
whether and how this pattern of neural activity directly leads to changes in symptoms.

If amygdala and sgACC activity are important predictors of stress outcomes, it is possible
that connectivity between these regions is important as well. Indeed, higher perceived stress
is associated with greater amygdala—sgACC resting state functional connectivity.5” This
altered connectivity may also be an important target for behavioral interventions for threat
and stress. Mindfulness meditation interventions—which foster awareness and acceptance of
present moment experience—have been shown to reduce stress reactivity in behavioral
studies®-70 and thus may be one intervention that could alter neural threat system
dynamics. Indeed, after a 3-day retreat-style mindfulness program (compared to a 3-day
relaxation control program), stressed adults showed a decrease in the amygdala—sgACC
connectivity at rest.5” Additionally, there was some initial indication that intervention
changes in the amygdala—sgACC connectivity were associated with decreases in cumulative
(hair-sampled) HPA axis activation, suggesting that altering the neural threat system may
play a role in reducing peripheral stress response system dynamics over time.57

It is also possible that behavioral interventions can increase top-down regulation of the
targeted neurobiological system.” For example, there is some initial evidence that
mindfulness interventions can increase resting state functional connectivity of regions
known to be important in executive control and top-down regulation.”273 We recently
showed that mindfulness training increases functional connectivity at rest (i.e., the PCC in
the Default Mode Network) with regulatory regions of the PFC (DLPFC), relative to a
relaxation training comparison group.’2 The DLPFC is a region implicated in emotion
regulation,3 and as such this connectivity pattern may represent a potential strengthening of
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top-down executive control after mindfulness training. Notably, we found that this increased
connectivity pattern was associated with intervention-driven reductions in inflammation at
follow-up.”2 Likewise, in a separate mindfulness intervention study with veterans with
PTSD, increased connectivity between the PCC and DLPFC was also associated with
reductions in PTSD symptoms,’4 suggesting that these connectivity changes have important
implications for both stress biology (interleukin [IL]-6) and stress-related (PTSD)
symptoms.

While there is a large cross-sectional literature relating activation of the neurobiological
threat system with increased stress and health risks,12:17 less is known about how behavioral
interventions (or stress reduction interventions specifically) might modulate this system. We
have described some initial intervention evidence suggesting that this is a promising area of
inquiry, particularly since there is a large behavioral literature linking interventions with
salutary stress-related health and disease outcomes.58.75.76

Behavioral interventions and the neural pain system

Pain is a common and distressing health concern that leads to significant healthcare costs,
missed workdays, and decreased quality of life.”” Moreover, pain that causes patients to
have difficulty completing typical daily activities is associated with poor health behaviors—
including physical inactivity, sleep insufficiency, and smoking—and greater mental health
symptoms.”8 Thus, altering patients’ experiences of pain could boost health by helping
improve quality of life and facilitating healthy behaviors. With the risks of uncomfortable
side effects and addiction with opioid pain relievers and other pharmacological treatments,
behavioral interventions might be an important alternative (Table 2). These interventions
could lead to changes in neural responses to pain perceptions and pain affect, or could
trigger increased neural coping and control mechanisms to manage pain.

In order to explore whether a behavioral intervention could alter perceptions of pain and
subsequent affect, some work has used experimentally manipulated pain relevant to a
patient’s diagnosis. Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder
with abdominal pain as one of the hallmark symptoms. Some over-the-counter pain
medications can cause irritation in the gut; therefore, many patients seek out alternative
therapies for their pain. Gut-directed hypnotherapy has been shown to have some efficacy in
alleviating I1BS symptoms for patients.”® To explore the neural mechanism, IBS participants
did either a gut-direct hypnotherapy intervention or educational intervention, and completed
baseline and post-therapy scans while experiencing high- and low-intensity rectal
distensions. Regardless of condition, IBS patients felt similar symptom reduction after
treatment.89 Patients who responded to hypnotherapy treatment showed reduced Al activity
to the high intensity distention after treatment compared to baseline, and more of a decrease
in Al activity to the low-intensity distention compared to the education group.89 While this
suggests that both hypnotherapy and patient education can reduce symptom burden for IBS
patients, hypnotherapy may alter neural pain responding differently than patient education
interventions, particularly for experiences of low-intensity pain.

Relatedly, interventions that affect connectivity within this system could also lead to changes
in pain symptoms. Fibromyalgia—a condition characterized by chronic, widespread pain—
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has increasingly become a condition of interest for intervention studies, as it is difficult to
treat. Recent work has found that physical exercise interventions may be effective in
reducing pain and fatigue in patients, but the neural mechanisms are poorly understood.81
Fibromyalgia patients and healthy controls engaged in a 15-week exercise intervention, and
completed a resting state scan before and after the intervention. At baseline, the patients
showed decreased connectivity between pain and sensorimotor brain regions compared to
healthy controls.82 However, after the intervention, patients showed greater connectivity
between the Al and primary sensorimotor areas, and this connectivity looked more similar to
healthy controls.83 This suggests that an exercise intervention can lead to stronger
connectivity between pain and sensorimotor regions; however, these changes in neural
connectivity were not associated with changes in symptoms. While it is currently unclear
how changes in resting state connectivity in the pain system might be linked to changes in
chronic pain symptoms, one possibility is that this increase in neural connectivity between a
nociception region and a feedback loop may provide for more efficient regulation to
decrease pain.

Finally, behavioral interventions for pain could also increase activity in regions associated
with cognitive control that could facilitate down regulation of pain responding. One
intervention of interest is mindfulness meditation, as there is evidence that mindfulness
training can lead to pain relief.84 In healthy adults, reductions in self-reported pain intensity
ratings to a thermal pain probe after a 4-day mindfulness training intervention were
associated with increased activity in the ACC and Al; similarly, reductions in self-reported
pain unpleasantness after the intervention were associated with increased OFC activity.8°
These findings were replicated again following another 4-day mindfulness training
intervention and these effects were observed above and beyond placebo or sham mindfulness
meditation comparison groups.86 Across these two studies, mindfulness meditation pain
relief was associated with changes in activity in cognitive control regions, suggesting that
mindfulness may also promote activity in top-down regulatory systems to help individuals
cope with pain.

Based on these findings, it is possible that behavioral interventions for pain could be relying
on neural mechanisms to modify pain responding or to enhance coping to the pain
experience. Across two studies with chronic pain patients, interventions were shown to
reduce neural pain processing or enhance connectivity within the pain system. Preclinical
work found that behavioral interventions could also enhance neural coping resources,
although the correlation with pain in daily life for chronic pain sufferers is not yet known.
As these two interventions elicited slightly different changes in the pain system (decreasing
responding or increasing coping), it is possible that there are multiple mechanisms by which
behavioral interventions could affect pain. Moreover, it is possible that certain types of pain
or certain patient characteristics could influence which neural mechanisms could lead to
beneficial health effects. Understanding the mechanisms for each intervention could provide
greater insight into which interventions might be most effective under certain circumstances.
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Behavioral interventions and the neural reward system

A broad range of health conditions, including obesity, and substance abuse and addiction,
have been linked to reward system dysfunction.8” Some behavioral interventions have been
shown to be modestly effective at treating these disorders and unhealthy behavior patterns.
88.89 |f interventions could reduce neural reward responding to poor health behaviors, or
enhance reward responding to healthier behaviors, this could lead to improvements in these
health conditions (Table 3).

Studies have explored the possibility that behavioral interventions might affect the neural
reward reinforcement of unhealthy behaviors. For example, an individual’s reward system is
implicated in both obesity and resistance to weight loss, as there appears to be relative
hyperactivation in the reward system to anticipating high-calorie foods for obese individuals
compared to lean individuals.?0 High-calorie foods are known to be more rewarding than
low-calorie foods,%! but individuals who show increased reward activation to viewing these
foods are more likely to gain weight.%2 However, recent work from two intervention studies
demonstrates that, after a weight loss intervention, obese individuals showed a significant
decrease in VS activity to high-calorie versus low-calorie food images at follow-up,%3 and a
decrease in activation to high-calorie food images in the MPFC from baseline to follow-up.
94 Moreover, participants who had relatively low insula activity to high-calorie food images
at post-intervention, compared to baseline, tended to be more successful at weight
maintenance.* Similar to weight-loss interventions, acute exercise (compared to no
exercise) has been shown to lead to reduced activity to food cues (vs. control) in the OFC,
insula and VS,% suggesting that an exercise intervention could effectively reduce neural
reward responding to unhealthy food. Furthermore, following a walking-based exercise
intervention, individuals showed reduced activity in the insula when viewing food cues
compared to baseline, and this decrease in insula activity was correlated with greater
decreases in body weight and fat mass.% In concert, these findings demonstrate that
restructuring reward-related neural responding to food cues might be one plausible neural
mechanism by which behavioral interventions could lead to changes in obesity-related
health outcomes.

Taken together, it seems that, for a health condition (obesity) characterized by exceptionally
difficult to change behaviors, interventions that reduced neural reward activity to these
unhealthy behaviors may help to lessen the reinforcing nature of them in ways that enhance
health. It will be important to investigate whether other behavioral interventions can reduce
reward system activity to unhealthy behaviors and lead to improvements in other health
conditions. Some behavioral interventions have also been shown to lead to greater
engagement in healthy behaviors, such as eating more vegetables.?” Cross-sectional work
has found that reward-related activity is associated with increases in physical activity,
suggesting that interventions could also affect health by increasing the reinforcement value
of healthy behaviors that may be difficult to maintain over time.?8 Future work in this area
could explore whether enhanced reward-related neural activity to engaging in healthier
behaviors like this may be a mediator for downstream health benefits.
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Behavioral interventions and the self and regulation system

Critical to our health is the ability to understand whether information is relevant to us, as
well as the ability to regulate the thoughts, feelings and behaviors that arise during daily life.
The role of the self and regulation system in these behaviors is central, and changes in
patterns of neural activity in this system may lead to increases in subsequent healthy
choices. Behavioral interventions could affect the self and regulation system in important
ways for health by increasing activity or connectivity in the system, supporting greater self-
and emotion regulation. It is also possible that behavioral interventions could reduce activity
in this system to change problematic self-perceptions and reduce negative self-concepts
(Table 4).

From public health messaging campaigns to receiving medical advice from a physician,
humans are regularly provided important and potentially life-saving health information. In
order for the person to engage in the healthy behaviors promoted in these messages, they
must see the message as being self-relevant. Recent research has found the more self-related
MPFC activity to these health messages, the more people are likely to change their behavior.
Specifically this has been demonstrated in health messages to encourage sunscreen use,®®
reduce smoking,4:99.100 and increase physical activity.%® The MPFC activity was also
shown to be effective in predicting behavior above and beyond self-reports.64 Importantly,
when these health messages are tailored to the individual they are more effective than when
they are more generic,100 supporting the idea that this self-relevance is important for the
subsequent behavior change. It may also be the case that other varieties of health messaging
(e.g., patient-provider communication or patient health education materials) have similar
neural mechanisms, and further research can help explore these possibilities.

One form of self-regulation is emotion regulation, an important strategy that has
implications for mental health and behavior.101 It is possible that behavioral interventions
can lead to increases in emotion-regulation activity to negative events; for example,
increasing emotion regulation to experiences of pain in fibromyalgia patients. One such
study examined the effect of CBT on emotion regulation activity in fibromyalgia patients.
Patients were randomly assigned to either CBT or waitlist control; before and after
treatment, they completed fMRI scans while receiving pressure pain stimulation. After CBT,
fibromyalgia patients showed increased VVLPFC activity to pressure pain compared to
baseline, but the control group did not see this increase.102 CBT also led to increased
VLPFC-thalamus connectivity, but there was no change in the control group.102 If the
thalamus serves as a major relay hub in the brain, and the VLPFC is an emotion regulation
region, increased connectivity between these regions could lead to changes in how pain
affects downstream consequences for patients. Indeed, there was a correlation between
increased VLPFC activity to pain and decreases in anxiety after CBT treatment.102 These
findings suggest that behavioral interventions could modulate the self and regulation system
activity in emotion regulation regions, enhance regulation region connectivity with an
important physiological communication hub, and this modulation in activity could be
associated with improvements in associated symptoms.

Some health conditions, including major depressive disorder (MDD) have been linked to a
bias towards negative social information and pervasive, negative self-thoughts.103 Thus,
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reducing activity in the self and regulation system to these negative stimuli might have
implications for mental health outcomes by reducing the likelihood that they continue the
cycle of negative thoughts characterized by this disorder. For example, patients with MDD
often have shown greater activity in the MPFC during self-referential processing of negative
words, whereas healthy controls showed greater MPFC activity to positive self-referential
processing.104 CBT, a well-established treatment for MDD, may help MDD patients
restructure negative thoughts about themselves. Following a 12-week CBT program, the
activity in MPFC and ventral ACC increased for positive, self-related stimuli and decreased
for negative, self-related stimuli compared to baseline in MDD patients.194 Moreover,
improvements in depressive symptoms corresponded with the lower ventral ACC activity
during negative self-referential processing.194 These findings suggest that effective
interventions for mood disorders may include decreasing negative self-beliefs, and the neural
mechanism for these improvements is likely through self and regulation systems.

The exciting early work showing that MPFC activity is predictive of changes in health
behaviors presents the self and regulation system as a prime candidate for studying the
neural mechanisms for how interventions may change subsequent behavior. Here, behavioral
interventions led to increased activity or connectivity in emotion and self-regulation regions
that related to changes in health markers or outcomes, suggesting that increased self and
regulation system activity may be one way behavioral interventions influence health.
Another mechanism described was reduced self and regulation system activity to negative
self-beliefs, which had important downstream health benefits as well. Thus, modulating
activity in the self and regulation system is an important area of interest for future studies
exploring links between interventions and health behaviors.

Discussion and future directions

Health neuroscience is a relatively new research domain,% and there is still much work to
be done linking behavioral interventions to the brain and health. The initial studies we have
reviewed here suggest that evaluating intervention effects for health, using a neurobiological
systems approach, will help reveal how these interventions enact change and elucidate the
biological mechanisms and cascades that drive health outcomes over time. In addition,
manipulating behavioral processes can be quite informative. As the father of social
psychology, Kurt Lewin, once said, “If you truly want to understand something, try to
change it.”196 Thus, interventions can be one tool for expanding knowledge on the
associations between neural processes and health, and can provide information on the best
intervention method for targeting the specific behavioral processes of interest. Specifically,
by working to change behaviors, knowledge can be gained about the etiology and
persistence of the behavior; similarly, by identifying mechanisms for interventions, the key
components or boundary conditions of the intervention can be identified and lead to
improvements in intervention delivery and efficacy. The work in this area has just begun,
and future research should continue to investigate the health neuroscience of behavioral
interventions, as there is significant value in moving toward causal models of health and
behavior by manipulating the brain with interventions.
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Our review (also see Tables 1-4) provides some initial promising indications for how
behavioral interventions affect neurobiological systems and health. Quite a bit of research
has pointed to stress as a potent detriment to health, and many behavioral interventions aim
to reduce stress to improve health.1” Decreased activity in the threat system following a CBT
treatment for PTSD patients was associated with improvements in PTSD symptomatology.®6
Mindfulness intervention led to reductions in connectivity within this system in stressed
adults, and this shift in connectivity was associated with reduced measures of cumulative
activation of the HPA system.57 Finally, mindfulness also led stressed adults to show
enhanced connectivity within cognitive control regions, and this served as a mediator for
reductions in inflammation.”2 This final study was one of the few to explicitly test neural
changes as a mediator for biological health markers. However, it is still unclear exactly what
these changes in connectivity mean or how they are associated with health outcomes.
Considering the interest in stress reduction interventions, the threat system is still
understudied. However, the work reviewed here shows that behavioral interventions can
modulate the neural threat system in ways that influence stress and stress physiology, and
future research can determine how these pathways may influence disease outcomes.

Chronic pain is a complex and difficult diagnosis and many pharmaceutical treatments are
ineffective or produce side effects, leading to a recent increase in attention to behavioral
interventions for pain. Here, we reviewed a few studies investigating the neural mechanisms
of these interventions, two of which were conducted with chronic pain samples. Gut-directed
hypnotherapy led to reduced pain system activity to pain stimulation for IBS patients, and
exercise led to greater connectivity between nociception and pain regions for fibromyalgia
patients, showing that behavioral interventions might alter how individuals respond to pain
neurally.89:83 |n healthy adults without a chronic pain diagnosis, mindfulness training led to
greater activity in cognitive control regions in response to pain stimulation, providing a
foundation for future work exploring the effect of mindfulness interventions on chronic pain.
85 However, so far this work has not linked changes in neural activity or connectivity with
changes in chronic pain symptoms for patients, an important avenue for future research.

Dysregulation in the neural reward system is linked to health conditions such as obesity and
addiction.8” Behavioral interventions that aim to change these health conditions would
therefore logically target the reward system. Indeed, we reviewed work showing that various
interventions reduced reward system activity to cues related to the health condition of study
(i.e., food images for individuals with obesity).93:94.96.107.108 |mportantly, some of these
studies found associations between changes in neural activity and important health markers.
For example, after a weight loss intervention, decreased insula activity to high calorie food
images was associated with more successful weight maintenance.* Behavioral interventions
can reduce reward activity to unhealthy behaviors, but less work has yet examined how
interventions might increase reward activity to healthy behaviors to reinforce them.
Although there are some promising initial studies showing higher neural reward activity is
linked to better health behavior,13:98 future work can assess changes in neural reward
activity from before to after treatment. In addition, it is not clear how long-lasting these
effects are, with the obvious implication that the longer the effects persist, perhaps the more
powerful the behavior change, particularly for those behaviors that are tenaciously difficult
to modify (e.g., exercise). These studies provide a compelling foundation for future
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behavioral intervention work that aims to adjust neural reward activity to change health
behavior.

The self and regulation system is the most studied system in the health neuroscience of
behavioral interventions, perhaps because behavioral interventions often aim to change how
individuals cope with or regulate their behaviors and emotions—two essential roles of the
self and regulation system. Critically, there is a body of work showing that the activity
within this system is predictive of a variety of health behaviors, underscoring the value of
interventions that affect this system.55 For patients who completed CBT, greater activity in
emotion regulation regions to pain stimulation was linked to changes in anxiety, an
important symptom of fibromyalgia that can exacerbate disability.192 In a population of
MDD patients, CBT led to greater decreases in self and regulation system activity to
negative information and parallel improvements in depressive symptoms.104 Together, these
results identify self-related processes as important contributors to health, and that
interventions that help promote changes in neural activity underlying these processes may
serve as a mechanism for health enhancement. Future work can provide a greater
understanding of how behavioral interventions change activity within this system, how they
are linked to behavior and affect, and, importantly, whether these changes are associated
with improvements in health outcomes.

To date, most research has focused on examining how behavioral interventions alter brain
function (and functional connectivity), while less research has evaluated how behavioral
interventions impact brain structure. This is an exciting area, and some initial studies show
experiences can affect brain structure (e.g., stress can increase amygdala volume), but also
that some therapies and medications can alter brain structure as well.109 It is reasonable to
hypothesize that some behavioral interventions could change brain structure in ways that
confer health benefits, and a few initial studies have explored this possibility.119 Structural
changes in the brain have been found to drive some functional effects in the brain as well,28
therefore building out these structural-functional relationships when studying the health
neuroscience of behavioral interventions is of value.

There are some methodological considerations in this new area of inquiry. First, much of the
intervention research focuses on changes in neural activity and links to more proximal health
outcomes (e.g., weight loss, anxiety, IL-6), but less work has been conducted linking
intervention related changes in neural activity or connectivity with more distal health
outcomes (e.g., diabetes, cardiovascular disease outcomes). Relatedly, most studies did not
test changes in neural activity or connectivity as a statistical mediator of health, although
there is some initial work adopting this approach.” New toolboxes and methods for
conducting brain-based mediation analyses are now available for accelerating research in
this area.111 Additionally, as this area of study is still developing, it will be important to
continue to replicate and extend these findings to related populations. A good example of
this model is the work that explores the MPFC activity as a predictor for health behaviors;
this effect has been replicated across a variety of studies, with varying health message
formats and targeted health behaviors.5564.112 |ndeed, converging, replicable evidence is
still needed to fully identify the neural mechanisms of interest for health interventions.
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Increasingly, patients are turning to behavioral interventions for helping manage some of
their health concerns. Indeed, some patients are faced with potential medication side effects,
treatments that only target the specific biological concern (i.e., chemotherapy targets the
tumor but does not alleviate psychological distress from the cancer diagnosis), or health
concerns that are marked by behaviors that are extremely difficult to change. Behavioral
interventions may address some of these concerns, and importantly, can be used in
combination with most pharmacological or procedural treatments. Health neuroscience has
begun to explore the neural mechanisms that might underlie the health benefits of these
behavioral interventions. Here, we have reviewed work that has explored how long-term
behavioral interventions modulate neural activity in ways that lead to improvements in
health outcomes. We organized these findings by the neural system intervention modulates,
which helps to identify the target neural systems for future work. Indeed, this review
suggests that interventions that are built to change stress physiology might reasonably look
to connectivity within the threat system as a candidate system to affect. Although many of
the interventions that found changes in neural pain system activity did not link this activity
to a health outcome specifically, it is likely that modulating this system could lead to
changes in how individuals perceive and respond to their pain, which could have important
long-term benefits for chronic pain patients. If a behavioral intervention were intended to
restructure the reinforcing nature of certain health behaviors, to reduce poor health behaviors
or increase good health behaviors, the results we presented would point to the reward system
as an important mechanism to explore. And finally, the self and regulation system appears to
be an important marker of self-relevance and regulation success. Therefore, interventions
that want to shift the individual’s beliefs about their self or help them regulate their emotions
and behaviors to be consistent with their view of self could reasonably hypothesize that the
intervention should modulate self and regulation system activity. While the health
neuroscience of behavioral interventions is still a young area of study, identifying the neural
mechanisms that lead to changes in health has importance for a wide range of individuals
interested in complementary treatments for their health. With increased knowledge of the
neural mechanisms of behavioral interventions, more effective interventions can be
developed. Future work on interventions can continue to explore theoretically sound possible
neural mediators, investigate these patterns in clinical populations of interest, and link these
neural mechanisms to relevant health markers and outcomes for maximum impact.
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Figurel.
Neural systems modulated by behavioral interventions. (A, B, C, D) Neural regions

hypothesized to be part of the Threat and Stress System (blue, A), Pain System (red, B),
Reward System (purple, C), and Self and Regulation System (green, D). Regions involved in
threat and stress include the dorsal anterior cingulate cortex (dACC), amygdala (amyg), and
subgenual anterior cingulate cortex (SgACC). Pain system regions include dACC (top),
anterior insula (Al; middle), and somatosensory cortex (bottom). Regions involved in reward
processing include the amygdala and ventromedial prefrontal cortex/orbitofrontal cortex
(VMPFC, OFC; top) and the Al and ventral striatum (VS; bottom). Regions involved in the
self and regulation system include the dACC, dorsomedial prefrontal cortex (DMPFC),
medial prefrontal cortex (MPFC) and VMPFC (top), and the dorsolateral prefrontal cortex
(DLPFC) and ventrolateral cortex (VLPFC; bottom).
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