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A B S T R A C T

While it is well established that stress can increase risk for a broad range of health and disease outcomes (e.g.,
major depression, cardiovascular disease), less is known about factors supporting resilience. An emerging lit-
erature indicates that activation of the brain’s reward system can mitigate subsequent stress responses to a broad
range of stressors in animals and humans, suggesting reward pathways as a novel mechanistic target for fostering
resilience under stress. This perspective will: 1) describe the emerging evidence linking primary and secondary
rewards with stress buffering effects; 2) identify plausible neurobiological mechanisms; and 3) introduce new
links between brain reward activation and reduced stress-related health and disease outcomes. We conclude with
a discussion of research opportunities and clinical implications of brain reward effects.

1. The role of brain reward pathways for stress resilience and
health

Although stress is related to increased health risks such as major
depressive disorder and post-traumatic stress disorder (Cohen et al.,
2007; Mcewen, 2004), most individuals are remarkably resilient
(Bonanno, 2004). Resilience is defined as the capacity to adapt suc-
cessfully to acute stress, trauma, or chronic adversity (Feder et al.,
2009). Despite significant public interest in this area, we still know little
about the neurobiological and behavioral mechanisms of resilience
(Bonanno et al., 2011; Rutter, 1985). While large independent litera-
tures have studied the brain’s reward and stress systems (Arnsten, 2009;
Baxter and Murray, 2002; Berridge and Robinson, 2003; Eisenberger
and Lieberman, 2004; Haber, 2011; Haber and Knutson, 2010; Herman
et al., 2005; Ulrich-Lai and Herman, 2009), new research over the last
ten years suggests a critical role for the brain’s reward system in
modulating the fight-or-flight stress response in ways that confer stress
resilience. We have organized this perspective into sections that de-
scribe: 1) experimental work that demonstrates robust relationships
between reward system activation and stress resilience (in animal and
human models); 2) plausible neurobiological mechanisms for these ef-
fects; and 3) promising links between reward system activation and
stress-related health benefits.

2. Activating the reward system reduces stress physiology and
behavior: experimental evidence

An organism’s survival depends on the ability to seek out and ap-
proach rewarding stimuli in the environment. Primary rewards are
those that immediately influence survival, such as food and reproduc-
tion, whereas secondary rewards are those that may not directly impact
survival but facilitate these survival behaviors, including money and
positive social experiences (Berridge and Robinson, 2003; Schultz,
2015; Sescousse et al., 2013). Also key to survival is being able to
successfully avoid or manage actual or perceived threats and stressors
(LeDoux and Daw, 2018; Sapolsky, 2004). These behaviors are funda-
mental and are subserved by the brain’s reward and stress systems,
respectively. While these neurobiological systems are well-character-
ized, the relationship and interactions between them have received far
less research attention. However, there is compelling experimental
evidence in animals and humans showing that reward manipulations
and rewarding environments foster stress resilience (see Table 1).

Administering primary rewards or providing rewarding environ-
ments reliably blunts stress reactivity responses. In humans, brief ex-
posure to a reward stimulus (e.g., erotic images) buffered subsequent
cortisol reactivity and improved problem-solving performance under
stress (Creswell et al., 2013a, 2013b). Likewise, young rats given a
sweet drink demonstrated greater pain tolerance and reduced distress
to a social isolation stressor (Blass et al., 1987; Blass and Shide, 1994).
(Interestingly, in clinical practice human infants are sometimes given a
sweet drink to buffer distress to painful medical procedures (Abad et al.,
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1996; Harrison et al., 2010).) Studies in which animals are chronically
exposed to rewarding environments show similar effects as these re-
ward administration studies. For example, two weeks of daily access to
a sweet drink or a sexually receptive mate led to significantly lower
adrenocorticotropic hormone (ACTH), corticosterone secretion and
lower heart rate to a subsequent restraint stressor challenge (Ulrich-Lai
et al., 2010; Ulrich-Lai et al., 2007). Furthermore, across multiple stu-
dies, rats given regular access to rewarding food and drink also showed
fewer stress behaviors, such as reduced distress vocalizations and
greater exploration of novel environments (MacKay et al., 2017; Ulrich-
Lai et al., 2010). In another demonstration of this effect, zebra fish
given rewarding food for two weeks showed less fear responding to
shock than control fish (Manuel et al., 2015). These initial reward
studies have also helped identify critical neurobiological pathways for
reward-stress resilience effects. Rewarded rats with a bilateral lesion to
the basolateral amygdala (BLA) no longer showed stress resilience,
suggesting that BLA may be a central neural processing region for re-
ward-stress modulation (Ulrich-Lai et al., 2010). Indeed, rewarding
stimuli have been shown to lead to increased plasticity in BLA and the
nucleus accumbens in rats, and these changes in plasticity are asso-
ciated with prolonged HPA dampening (Christiansen et al., 2011;
Ulrich-Lai et al., 2010). Across species, primary rewards lead to re-
ductions in stress as measured by multiple stress outcomes including
physiological stress responding, distress to pain, and stress behaviors.

While much of the initial research has focused on the stress buf-
fering effects of primary rewards, secondary rewards show similar ef-
fects (see Table 1). For example, human neuroimaging studies have
shown that thinking about one’s personal values increases reward-re-
lated neural activity in the VS (Cascio et al., 2016; Dutcher et al., 2016)
and buffers cortisol, catecholamine and behavioral responses to stress
(Creswell et al., 2013a, 2013b; Creswell et al., 2005; Sherman et al.,
2009; Spicer et al., 2016). Thinking about positive autobiographical
memories also leads to increased VS activity (Speer et al., 2014), and
lowered cortisol reactivity to a stressor (Speer and Delgado, 2017).
Similarly, both perceiving and receiving social support activate the VS
and VMPFC (Eisenberger et al., 2011; Inagaki and Eisenberger, 2012;
Younger et al., 2010), and buffer cortisol stress responding and neural
markers of distress under threatening or painful conditions (Eisenberger
et al., 2011; Kirschbaum et al., 1995; Thorsteinsson et al., 1998;
Younger et al., 2010).

Pharmacological studies also highlight the role that reward system
neurotransmitters, such as dopamine and endogenous opioids, play in
stress resilience. Dopamine is known to foster stress resistance, as me-
socortical release has been shown to prevent exaggerated behavioral
and physiological stress reactivity and is associated with active coping
to stressful events (Cabib and Puglisi-Allegra, 2012; Sullivan, 2004).
Endogenous opioids have also been theorized to play a critical role in
stress modulation via their influence on neuroendocrine and autonomic
cascades, and behavior (Drolet et al., 2001). Endogenous opioids are
also involved in blunting the distress of pain and are widely distributed
through the limbic system (including the amygdala and hypothalamus),
leading some to argue that opioids may attenuate physiological re-
sponses to emotional or affective states, thus lessening the impact of
stress (Drolet et al., 2001).

Because dopamine and opioids are critical neurotransmitters in the
reward system, and rewarding stimuli can buffer against stress, then
blocking these key neurotransmitters should diminish stress resilience
effects. Indeed, rats administered a dopamine antagonist, which blocks
the neurotransmitter cascade from the reward system, showed increased
physiological stress responding (Sullivan and Dufresne, 2006). Ad-
ditionally, blocking opioids with an antagonist led to increased stress
vocalization responding in cats during restraint stress (Abercrombie
and Jacobs, 1988) and rats experiencing social isolation (Kehoe and
Blass, 1986). Furthermore, while rewards have been shown to decrease
pain sensitivity and behavioral stress responding, these effects are re-
versible with the administration of an opioid antagonist (Blass et al.,Ta
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1987; Forsberg et al., 1987). Consistent with a role of opioids in stress
regulation, administration of an opioid (morphine) to socially isolated
young rats led to decreased distress vocalizations and increased an-
algesic effects, whereas administration of an opioid antagonist resulted
in greater stress behaviors (Kehoe and Blass, 1986). In concert, these
findings suggest that dopamine and opioids play a critical role in the
stress buffering effect of rewarding stimuli, and blockade increases
stress responding. Future translational work could test this mechanism
in human blockade studies (with antagonists such as naltrexone).

3. Plausible neurobiological relationships between reward and
stress resilience

The reward system is a well-characterized network of regions across
the limbic, prefrontal, striatal and midbrain regions (Haber and
Knutson, 2010), and neural activity in these regions is relatively con-
sistent across primary and secondary reward types, as shown in a
thoughtful review of this work (Sescousse et al., 2013). Like the reward
system, the neurobiology of the brain’s fight-or-flight stress response
system is well-characterized including regions in limbic, midbrain and
prefrontal systems that mediate physiological stress responding via the
hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous
system (López et al., 1999; McEwen, 2007; Sinha et al., 2004; Ulrich-Lai
and Herman, 2009). These key neural regions are in close proximity
(see Fig. 1) but are functionally distinct. However, these regions also
have significant connectivity, and these communication channels are
the key drivers of the reward stress resilience response.

3.1. Overlapping but distinct neuroanatomy for reward activation and stress
responses.

While both the stress and reward systems in the brain include
limbic, prefrontal, and midbrain structures, our perspective is that there
is functional specificity and segregation in these structures supporting
reward and stress processes. Indeed, research in animals has identified
dissociable divisions between the brain’s reward and stress systems.
Two important limbic regions, the hypothalamus and the amygdala,
demonstrate this division. In particular, the paraventricular nucleus of
the hypothalamus and the dorsomedial hypothalamus have been
identified as key locations for autonomic and HPA modulation, both to
activate or inhibit stress responding (Ulrich-Lai and Herman, 2009).
Meanwhile, the lateral hypothalamus has been linked to reward and
motivation, including reward preferences and reward seeking (Harris
et al., 2005). Similarly, the central nucleus of the amygdala is thought
to be most sensitive to homeostatic and systemic stressors, and is in-
volved in autonomic responses to stress, (Ulrich-Lai and Herman, 2009)
while the medial and basolateral amygdala (BLA) nuclei are activated
to psychological stressors and are associated with HPA stress

responding (Ulrich-Lai and Herman, 2009). Animal studies have also
implicated BLA activity in reward processing, (Baxter and Murray,
2002) (human neuroimaging results have been less clear, suggesting
that human amygdala responses to reward are more about salience than
value (Zald, 2003)). Furthermore, although the prefrontal cortex’s cy-
toarchitecture does not clearly delineate specific structures, there is
evidence that reward and stress responding depend on different sub-
sections within this region. In rodent research, the prelimbic PFC (BA
32) has been shown to inhibit and regulate the HPA axis response to
stressors, whereas the infralimbic PFC (BA 25) seems to initiate HPA
response to stress (Radley et al., 2006). (To extend to human anatomy,
the prelimbic PFC is most like the dorsal VMPFC, and the infralimbic is
most like the subgenual VMPFC.) This work suggests more fully map-
ping these nuances in structures is a future direction for research in this
area, particularly with advances in high-resolution neuroimaging in
humans. Understanding more about these dissociable regions might
hold promise for elucidating the mechanism by which rewarding sti-
muli can reduce stress responding. If these systems are separate and
specific, then functional and chemical connectivity between them are
the most plausible neurobiological mechanisms for stress resilience

3.2. Structural, functional and neurochemical connectivity between reward
and stress systems.

There are strong neurobiological pathways linking regions within
the reward and stress systems. One such pathway is via plausible
structural connections that could support reward-stress resilience ef-
fects. For example, limbic and forebrain reward system structures have
projections to stress system regions that regulate physiological stress
response cascades, like the hypothalamus and brainstem (Ulrich-Lai
and Herman, 2009), resulting in decreases in HPA stress responding
(Diorio et al., 1993). Specifically, the VS, and VMPFC/OFC project to
the hypothalamus, while the VMPFC/OFC has direct projections to the
brainstem as well (Brinley-Reed et al., 1995; Haber, 2011; Haber and
Knutson, 2010; Sesack et al., 1989; Terreberry and Neafsey, 1987).
Similarly, the VMPFC/OFC has direct projections to the amygdala
(Brinley-Reed et al., 1995; Haber and Knutson, 2010), and the VS in-
directly projects to the amygdala through the cholinergic fibers in the
nucleus basalis in the basal forebrain (Haber and Knutson, 2010).
Greater understanding of the structural connections between these
systems and how they might support reward system modulation of
stress responding is an exciting avenue for future research.

Importantly, in addition to these structural communication path-
ways, there is also evidence of functional modulation between the re-
ward and stress systems. Human neuroimaging has also found that
activating VS or VMPFC to rewarding stimuli leads to corresponding
functional decreases in neural and behavioral responses to pain sti-
mulation(Eisenberger et al., 2011; Younger et al., 2010). In the context

Fig. 1. Figure displaying locations of key brain
regions within reward and stress systems on
two different orientations of the brain.
The VS is a collection of regions within the
basal ganglia including the caudate nucleus,
caudate head, nucleus accumbens (NAcc), and
ventral portions of the putamen (Haber, 2011).
The VMPFC and OFC are often labeled inter-
changeably depending on the author and an-
imal model being studied.
VS=ventral striatum; amyg= amygdala;
VMPFC=ventromedial prefrontal cortex;
OFC=orbitofrontal cortex; hyp=
hypothalamus; VTA= ventral tegmental area.
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of fear, functional interactions between the ventral striatum and the
amygdala are associated with coping with and learning to avoid fear
(Delgado et al., 2009). Negative affective stimuli are associated with
increased amygdala activity, and activity in the VMPFC has been shown
to be inversely correlated with this amygdala activity (Banks et al.,
2007; Kim et al., 2003; Urry et al., 2006); additionally, the stronger the
inverse coupling, the greater the declines in cortisol secretion (Urry
et al., 2006). These results suggest that beyond the structural connec-
tions between reward and stress systems, there is evidence of functional
modulation in line with this account as well.

For a number of years, theorists have suggested that opioids reg-
ulate pain and fear responses to enhance survival by giving the or-
ganism a chance to respond to the threat (Fanselow, 1986; Fields, 2006;
Leknes and Tracey, 2008). Here, we suggest that this same potential
opioid regulation mechanism might be one mechanism by which re-
warding stimuli can reduce stress responding. Indeed, blocking opioids
reverses the effect of rewards on distress vocalizations in cats and rats
(Abercrombie and Jacobs, 1988; Kehoe and Blass, 1986). Importantly,
although the opioid antagonist (naltrexone) is a nonspecific receptor
antagonist, there is evidence that it is preferential for mu opioid re-
ceptors (Raynor et al., 1994; Wang et al., 2001), highlighting the pos-
sibility that mu opioids are a key neurotransmitter for the effects of
reward on stress responding. Indeed, of the three primary opioid re-
ceptors, the mu receptor is the one most expressed in the amygdala, a
critical structure for stress regulation, and mu opioids are implicated in
reward processing of a variety of different rewarding stimuli (Le Merrer
et al., 2009).

Dopamine is a well-established reward system neurotransmitter,
with dopamine neurons residing throughout regions within the mid-
brain including the VTA and VS, and rewarding stimuli leading to do-
pamine release (Haber and Knutson, 2010). Interestingly, blocking
dopamine has been shown to increase stress (Sullivan and Dufresne,
2006), and dopamine administered directly to the central nucleus of the
amygdala led to attenuation of stress-induced ulcer formation (Ray
et al., 1987), suggesting a role for dopamine in stress regulation.
However, the role that dopamine plays in stress reduction is not clear.
For example, animal work has also demonstrated dopamine release in
the presence of a stressor (Abercrombie et al., 1989). Some theorize
that dopamine in the reward system leads to stress adaptation, such that
it does not always facilitate stress nor reduce stress, but rather that it
serves as a critical feedback mechanism to prevent exaggerated stress
responses (Cabib and Puglisi-Allegra, 2012; Sullivan and Dufresne,
2006). Greater research is needed to understand the role, if any, that
dopamine plays in reward-stress effects.

The last two decades have seen an increased interest in oxytocin and
the role that this neuropeptide may play in behavior (cf. Yoshida et al.,
2009). For example, work has demonstrated that central administration
of oxytocin in rats leads to reduced behavioral and physiological re-
sponses to stress (Windle et al., 1997). Furthermore, some work in
humans has suggested that social rewards and the stress buffering effect
may interact with or depend upon oxytocin (Chen et al., 2011; Dölen
et al., 2013), suggesting that oxytocin is a possible substrate for re-
ward’s effects on stress buffering. However, other work demonstrates
that oxytocin can decrease the rewarding effects of dopamine (Baracz
and Cornish, 2013). While oxytocin can lead to enhanced positive or
prosocial behavior under certain conditions, work has also found that
oxytocin leads to enhanced negative behaviors when individuals feel
unsafe or stressed, highlighting the complexity of oxytocin’s role in
behavior (Olff et al., 2013). Oxytocin receptors are present in many
stress and reward-relevant brain structures (amygdala, striatum, hip-
pocampus and brainstem), but their precise effects on stress physiology
is mixed; in fact, oxytocin can also promote cortisol release (Meyer-
Lindenberg et al., 2011). Thus, oxytocin may be an important mod-
erator (but not a mechanism) of reward-stress interactions via its in-
teractive role with the dopamine and opioid systems (Onaka et al.,
2012; Strathearn, 2011; Tops et al., 2014). Indeed, work in this area

suggests that oxytocin may influence corticostriatal reward systems via
these neurotransmitter mechanisms to lead to resilience to stress (Tops
et al., 2014). However, the interactions between oxytocin and the re-
ward-stress buffering effect are an important candidate for future re-
search.

In summary, there is significant structural connectivity within and
between reward and stress regions, and functional associations that
support inhibition between the reward system and the stress system.
Additionally, we believe opioids (mu opioids in particular) serve as an
important chemical conduit for this stress resilience effect. While ex-
amining the neurobiological communication mechanisms between
these two systems is still in its infancy, the evidence thus far demon-
strates links that support interaction between the two systems, in ways
that could allow the animal or organism to adaptively respond to
aversive threats (Leknes and Tracey, 2008).

4. Reward-stress resilience pathways: implications for health

If brain reward pathways confer stress resilience, one implication is
that they could protect against stress-related health outcomes. It is well-
established that stress can trigger the onset and exacerbation of a broad
range of psychiatric disorders (e.g., depression, PTSD, addictive dis-
orders) and physical health conditions (e.g., cardiovascular disease,
cancer) (Cohen et al., 2007; Hammen, 2005; Jones and Barlow, 1990;
Mcewen, 2004; McEwen and Gianaros, 2010; Sinha, 2008). Despite the
promise of a reward-stress resilience-health link, there is surprisingly
little work investigating how manipulating or intervening upon reward
processes might affect health and disease (cf. Cascio et al., 2016; Falk
et al., 2015). Correlational work has found that engaging in rewarding
activities is associated with stress reduction and health benefits (e.g.,
lower depressive symptomatology, lower blood pressure) (Pressman
et al., 2009). Furthermore, enriched environments have similar benefits
in rodents, including decreased physiological and behavioral stress re-
sponding, and increased innate immunity (Belz et al., 2003; Benaroya-
Milshtein et al., 2004; Carlstead and Shepherdson, 2000; Francis et al.,
2002). However, recent work has leveraged the current understanding
in neuroscience to explore associations between the reward system and
health.

Experimental studies with animals have begun to explore the role of
the reward system in physical health. For example, in rats, a dopamine
agonist or injection (into the BLA) attenuated ulcer formation following
cold restraint stress, while a dopamine antagonist aggravated ulcer
formation(Ray and Henke, 1991). Additionally, the development of
new transgenic mouse models has been used for evaluating the role the
reward system plays in health. Specifically, researchers have used a
Designer Receptors Exclusively Activated by Designer Drugs model
(DREADDs) (Ben-Shaanan et al., 2017) to directly activate endogenous
dopamine neurons within the mouse VTA, and then exposed the mice to
a bacterial challenge. Findings indicate that activating the VTA led to
an increase in innate and adaptive immune responses to the bacterial
challenge (Ben-Shaanan et al., 2016). While the DREADDs work is
newer, it is likely to be an important method for exploring many other
relationships between reward pathways and stress-mediated health
risks (e.g., cancer, depression). For example, recent work using this
same paradigm found that activating the VTA of tumor-bearing mice
led to reductions in tumor weight via sympathetic nervous system (SNS)
influences on anti-tumor immunity (Ben-Shaanan et al., 2018), linking
reward system activation to a major health outcome.

Human neuroimaging studies have reported suggestive links be-
tween reward and stress-related mental health. Among individuals who
reported experiencing significant post-2016 election distress, greater VS
(NAcc) activity to a rewarding task was associated with fewer depres-
sive symptoms, diminishing the relationship between election distress
and depression (Tashjian and Galván, 2018). A similar effect was de-
monstrated with adolescents, showing that greater reward-related
neural activity to eudaimonic rewarding stimuli was associated with
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longitudinal declines in depressive symptoms (Telzer et al., 2014).
These studies are correlational and more experimental work is needed,
including work exploring how rewarding interventions affect stress-
related mental health outcomes (e.g., depression, substance abuse)
(Hammen, 2005; Sinha, 2001).

4.1. Absence or Loss of Reward and Health

While we have spent the majority of this review discussing the
impact that anticipating or receiving a reward might have on reducing
stress responding and the implications for health. However, there is
literature that suggests that anticipating a reward but then having that
reward revoked or withheld leads to increased activity in regions of the
brain’s stress system and a corresponding decrease in reward system
activation (Abler et al., 2005; Hernandez Lallement et al., 2013). Thus,
it seems likely that while the anticipation of reward leads to activation
of the reward system, having that reward stimulus taken away is not
only not rewarding, it seems to be its own stressor. This would coun-
teract the brief activation of reward pathways and ultimately lead to
increased, rather than decreased, stress responding. Indeed, work on
Effort-Reward Imbalance (Siegrist, 1996) suggests that high stress and
low reward circumstances at work and in relationships have potent
negative health effects (Dragano et al., 2017; Rugulies et al., 2017;
Sperlich et al., 2012; von dem Knesebeck and Siegrist, 2003). Taken
together, these literatures suggest that the loss or absence of rewarding
stimuli and environments is stress exacerbating and has negative health
consequences. However, to our knowledge, work has not yet examined
the neural underpinnings of this loss of reward-stress exacerbating ef-
fect on health or markers of health, which could help clarify how these
two neural systems communicate under these low-reward circum-
stances.

The impact that reward-stress buffering has on health outcomes is a
very new area of study, and the links we have detailed here are merely
suggestive. Furthermore, across human and animal studies, most have
not yet explored both how rewarding stimuli could reduce stress re-
sponding and how this effect could improve health in the same study.
The literature finds that reducing stress can have important implica-
tions for health outcomes (Creswell and Lindsay, 2014; Haslam et al.,
2016; Tetrick and Winslow, 2015; Wagner et al., 2016), but only a few
studies have pointed to reward processing as a possible correlate for
health (Ben-Shaanan et al., 2016, 2018; Telzer et al., 2014). But future
work can help establish whether the reward-stress buffering account we
have laid out here serves as a mechanism for stress resilience effects on
health.

5. Discussion and future directions

Large independent literatures have focused on the reward and stress
systems, yet much less attention has been paid to how these systems
interact. Here, we describe exciting new research linking reward system
activation with stress resilience, as well as initial links to stress-related
health outcomes. We reviewed a range of human and animal studies
linking reward system activation (and rewarding environments) with
stress resilience effects (see Table 1). Consistent with this reward-stress
account, reward-related neurotransmitters play a critical role in driving
stress resilience effects in pharmacologic studies, and one goal of this
perspective was to outline some plausible neurobiological pathways
linking the reward system with stress resilience. For example, reward
regions such as the VS and VMPFC have been shown to have structural
and functional inhibitory connections to regions that deploy the phy-
siological stress response. Empirical evidence in animals also points to
endogenous opioids as a critical neurobiological communication
pathway for reward mediated stress reduction. Future human studies
can capitalize on advanced, high-resolution neuroimaging and phar-
macological blockade protocols to supplement the animal findings in
support of these connections. In sum, the work we have summarized

here synthesizes the human and animal work demonstrating a reliable
and consistent reward-stress reduction pattern, while highlighting the
connectivity between the reward and stress systems that could support
this effect. While some accounts have suggested significant overlap
between the neurobiology, our perspective, informed by animal studies,
is that this overlap is more nuanced, and we hope this catalyzes further
research in this area.

This reward-stress buffering work carries potential implications for
stress-related disorders and health outcomes. Although this research
area is still young, there are a few demonstrations with pharmacolo-
gical manipulations in rats, transgenic mouse models, and cross-sec-
tional mental health studies in humans (Ben-Shaanan et al., 2016; Ray
and Henke, 1991; Tashjian and Galván, 2018; Telzer et al., 2014).
These studies suggest that activating the reward system might reduce
the risk of stress-related health problems, boost immunity and reduce
the risk of depression (Ben-Shaanan et al., 2017; Tashjian and Galván,
2018; Telzer et al., 2014). But more prospective randomized controlled
trials are needed to test these stress resilience-health links.

There is still quite a bit to learn about the pathways linking reward
system activation and stress resilience. First, greater understanding of
the anatomical and functional connections between neural regions in-
volved in reward and stress processing would buttress the current body
of behavioral research in this area. In humans, diffusion-tensor imaging
(DTI) and diffusion-spectrum imaging (DSI) continue to improve as
techniques for mapping the white matter tracts within these neural
circuits, which will help provide a better understanding of the inter-
actions between the brain’s reward and stress response systems. Second,
future research can also help clarify the signaling pathways that confer
resilience. The initial evidence in this area has focused on neuro-
transmitter antagonist administration studies in animals, but these an-
tagonists have analogs that could be used in translational studies with
humans. Careful work with important novel methods will be important
for establishing the precise roles that opioids and dopamine have in
modulating stress responding.

The perspective we have described, and the evidence to date, shows
that a broad range of rewards, from sweet substances to thinking about
important values, can have stress buffering effects. However, the
timing, duration, and category of reward could influence stress resi-
lience and we still know little about the boundary and moderating ef-
fects of these factors. But as an example, recent human neuroimaging
work in adolescents shows that reward-related neural activity to eu-
daimonic rewarding stimuli—prosocial decisions—was associated with
declines in depressive symptoms over time, while reward-related neural
activity to hedonic rewarding stimuli—decisions that were more self-
ish—was associated with increases in depressive symptoms over time
(Telzer et al., 2014). Importantly, this work does not suggest that these
rewarding stimuli did not both buffer against stress responding (that
was not tested in this experiment), but it suggests that future work
directly comparing different types of rewards’ effects on stress re-
sponding might identify the specific contexts that lead to health bene-
fits. Furthermore, while both primary and secondary rewards may have
similar stress resilience benefits, in clinical practice they may have
different long-term consequences. For example, eating a rewarding food
prior to a stressful event may lead to consumption of excess calories,
whereas thinking about a positive autobiographical memory may have
the rewarding benefits without the calories.

While we described evidence for the effect of reward manipulations
on stress buffering, how long these effects persist is not clear. However,
there is some initial evidence suggesting that these effects may have
persistent effects. Specifically, stress resilience effects have been ob-
served in rats 21 days after the last rewarding food stimulus
(Christiansen et al., 2011). Moreover, greater frequency and longer
duration of reward administration has been shown to lead to greater
HPA dampening, but increased volume or amount of reward did not
(Ulrich-Lai et al., 2011). Taken together, these findings suggest that
frequent rewarding experiences might have lasting impacts on
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biological stress responding and identify two important directions for
future research: 1) understanding the timing and duration for when
rewarding stimuli might be most effective in reducing stress, and 2)
investigating how rewarding stimuli might alter stress systems, as it is
possible that short-term interventions that activate the reward system
have longer-term effects on stress-related outcomes via stress system
plasticity. We know that chronic stress has potent negative effects on
health (Cohen et al., 2012; Mcewen, 2004), and thus it will be im-
portant to understand the effects of long-term rewarding environments
for those facing chronic stress as well.

The majority of the research we reviewed manipulated reward via
direct reward administration (e.g., consuming a sweet drink or thinking
about one’s values). In some cases, the animals were given access to a
rewarding stimulus for a period of time—making it difficult to isolate
whether these effects are due to the pleasurable experience of the sti-
mulus, the anticipation of the stimulus, or a general activation of the
reward system. The anticipation of reward activates the reward system
as much as the receipt of reward (Berridge and Robinson, 2003;
O’Doherty et al., 2002), so we speculate that both receiving or antici-
pating a reward may be sufficient for facilitating stress resilience ef-
fects, although more research is needed to test this hypothesis.

While the present body of work suggests that rewarding activities
could be a tool for buffering anticipated stressful events, there are still
many open questions about the translational value of reward-stress
interactions for clinical contexts. For example, reward manipulations
could help lessen stress responding in triggering contexts among an-
xiety and panic disorder patients. Yet it is not clear whether reward
pathways can be stimulated to buffer against chronic unrelenting forms
of stress (e.g., caregiving, chronic illness). But as previously described,
there is some promising initial indication in epidemiological work that
rewarding activities are associated with reductions in stress, depressive
symptomatology, and blood pressure among individuals dealing with
longer-term stressors (Pressman et al., 2009). Finally, this perspective
on reward-stress resilience effects may have utility for understanding
other therapeutic approaches. Reward pathways may be a common
underlying mechanism linking a broad range of evidence-based beha-
vioral treatments with stress resilience (e.g., cognitive-behavioral
therapy, mindfulness training).

6. Conclusions

The findings presented here suggest that reward system activation
can reduce behavioral and physiological responses to stress in both
human and animal models. Neural, behavioral, and pharmacological
studies support the neurobiological plausibility for reward-stress resi-
lience effects, highlighting the role of connectivity between reward
structures (such as VS and VMPFC) and structures that initiate phy-
siological stress responding (hypothalamus and amygdala), as well as
the role of opioids in this relationship. These findings, and this account,
highlight new directions for building out mechanistic research and
translational interventions linking rewards, stress resilience, and health
outcomes in health neuroscience.
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