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Mindfulness training is widely recognized for its benefits in reducing depression, anxiety, and loneliness. With the rise of
smartphone-based mindfulness apps, digital meditation has become more accessible, but sustaining long-term user engagement
remains a challenge. This paper explores whether respiration biosignal feedback and mindfulness skill estimation enhance
system usability and skill development. We develop a smartphone’s accelerometer-based respiration tracking algorithm,
eliminating the need for additional wearables. Unlike existing methods, our approach accurately captures slow breathing
patterns typical of mindfulness meditation. Additionally, we introduce the first quantitative framework to estimate mindfulness
skills—concentration, sensory clarity, and equanimity—based on accelerometer-derived respiration data. We develop and
test our algorithms on 261 mindfulness sessions in both controlled and real-world settings. A user study comparing an
experimental group receiving biosignal feedback with a control group using a standard app shows that respiration feedback
enhances system usability. Our respiration tracking model achieves a mean absolute error (MAE) of 1.6 breaths per minute,
closely aligning with ground truth data, while our mindfulness skill estimation attains F1 scores of 80-84% in tracking skill
progression. By integrating respiration tracking and mindfulness estimation into a commercial app, we demonstrate the
potential of smartphone sensors to enhance digital mindfulness training.
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1 INTRODUCTION

Mindfulness training, a therapeutic technique that cultivates attention and awareness of the present moment,
has gained increasing recognition for its role in improving mental health outcomes [61, 64, 65]. Recent studies
highlight its potential to mitigate the rising rates of depression, anxiety, and loneliness among young adults in
the United States, a population experiencing an unprecedented surge in mental health challenges [71, 99, 100].
Epidemiological data reveal that the prevalence of mental illness in this age group is nearly doubling every five
to seven years. Compared to standard care and active control groups [63, 65, 66, 74, 88], mindfulness training has
shown greater efficacy, largely due to higher acceptance and engagement within this demographic [25]. Clinical
trials consistently demonstrate that mindfulness not only reduces stress, loneliness [27, 28, 54], cortisol levels,
and blood pressure reactivity to stress but also significantly enhances daily well-being [60, 64, 65].

With smartphones now an integral part of daily life for young adults, smartphone-based mindfulness training
offers a highly effective, accessible, and practical solution, evidenced by the widespread adoption of mindfulness
apps [81, 85] like Headspace and Calm, which have collectively been downloaded over 180 million times. Random-
ized controlled trials (RCTs) have demonstrated that these digital interventions can significantly improve both
psychological and physical well-being [60, 64, 65]. However, despite their promise, sustained user engagement
remains a critical challenge [14, 75]. For instance, a recent review found that mindfulness meditation apps
achieve higher daily usage (median 21.7 minutes) and retention rates compared to other mental health apps [14].
Yet, even the retention rate for these apps remains low at just 4.7%, underscoring a persistent issue with user
engagement [14]. This highlights the urgent need for more engagement mindfulness applications, as research
consistently shows that greater user engagement leads to improved clinical outcomes [24, 28, 70].

Several decades of research highlight the potential of biosignal feedback to enhance user engagement and
outcomes on mobile health platforms [40, 43, 51]. Notable examples include EEG-measured brainwave feedback
in the RelaxWorld app [51], EEG and vibration-based haptic feedback in the AttentiveU platform [50], and
respiration biofeedback in gamified platforms [33, 91]. In the context of mindfulness meditation, respiration
tracking emerges as a particularly promising and predictive signal [8, 52]. Although the relationship between
mindfulness practice and respiration patterns remains underexplored, preliminary studies suggest distinct
alterations in breathing during mindfulness sessions, even when users are not consciously controlling their
breath [2, 106]. This presents an opportunity to provide users with insights into their mindfulness progression and
skill development. Despite the growing popularity of commercial mindfulness apps such as Headspace and Calm,
which are integrated into wearable devices like Oura rings, Fitbits, and Whoop sensors, few products incorporate
real-time biosignal feedback into their training. While respiration-based biofeedback has been explored in gamified
platforms [91], it remains absent in both commercial and non-commercial mindfulness meditation apps aimed at
improving system usability and user engagement. Existing apps—such as Muse (EEG-based brain signals), Flowly
(heart rate and HRV via external sensors), Inner Balance (HRV using HeartMath sensor), and Core Meditation
Trainer (ECG)—rely on external biosignal acquisition devices, limiting scalability. Notably, none of these systems
incorporate respiration biofeedback, despite its central role in mindfulness practices. Respiration is not only more
intuitive and directly connected to meditative techniques like breath awareness, but it can also be captured using
minimally obtrusive sensors, making it a practical and scalable feedback modality. Respiration also plays a pivotal
role in the physiological manifestation of mindfulness; specifically, slow breathing rates (4-9 bpm) are known to
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Fig. 1. We integrate a feedback module into a commercially available mindfulness meditation app, Equa, featuring a real-time
respiration rate chart, respiration statistics, and mindfulness progress feedback. This is achieved by developing a respiration
rate tracking algorithm and a mindfulness skill change estimation algorithm. To assess the impact of this feedback, we
conducted a user study evaluating user satisfaction, mindfulness progression, and engagement.

optimize a parasympathetically dominated restful state via vagal stimulation [35, 86], and recent research shows
that breathing rhythms modulate brain activity related to emotion regulation and attention [97].

To achieve this goal, this paper addresses three novel research questions: (1) Can respiration biosignals be
effectively tracked during digital mindfulness training using the smartphone’s built-in sensors? (2) Can these
sensor signals predict improvements in mindfulness skills? (3) Does providing respiration biosignal feedback
after each session enhance sustained engagement with digital mindfulness training? To answer these questions,
we track and visualize respiration biosignal and the change in mindfulness skills as feedback to users into a
smartphone application using the phone’s on-board accelerometer that delivers a unique mindfulness training
curriculum focused on cultivating core skills: concentration— “your ability to focus on what you want to,” sensory
clarity— “your ability to track and explore your sensory experience in real-time,” and equanimity— “your ability to
allow sensory experiences to come and go,'—based on previous digital mindfulness prototypes [21, 61, 64, 65, 93].
As illustrated in Figure 1, our system integrates a feedback module that provides real-time respiration tracking,
breathing statistics, and mindfulness progress estimation, allowing users to reflect on their meditation sessions.

To effectively track respiration and mindfulness skills in the app, we address two key technical challenges. First,
although respiration tracking has been well studied [5, 30, 39, 78, 83, 84, 94, 101], existing methods are inadequate
for detecting the slow breathing rates (<10 bpm) characteristic of mindfulness practices. Most respiration rate
estimation algorithms are developed and tuned for natural breathing rate detection or for monitoring pulmonary
patients [84, 101]. To overcome this, we develop an accelerometer-to-respiration rate algorithm capable of
accurately tracking both low (4-9 bpm) and regular (10-30 bpm) respiration rates. This algorithm is validated
against clinical-grade Hexoskin lifeshirts, demonstrating reliable performance across a wide range of respiration
patterns [44, 49]. While respiration biofeedback and smartphone-based tracking have been explored, our work
is the first to use respiration as a biomarker for assessing and enhancing mindfulness skills. Moreover, prior
smartphone-based methods (e.g., InstantRR [84, 101]) focus on natural breathing rates (12—-20 bpm) and struggle
with the slower rates critical to mindfulness practice.

Building on the development of our accurate low respiration tracking, we design a user feedback interface
screen that visually represents the change in breaths per minute during each session. It also highlights the total
time spent within the optimal breathing zone, which prior research suggests falls between 4 and 9 bpm [15, 58].
Previous studies suggest that this slow breathing zone may optimize a restful parasympathetically-dominated
restful state mediated by vagus [35, 86]. In addition to these metrics, participants receive continuous respiratory
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signal feedback throughout their sessions. While respiration biosignal feedback has been shown to enhance
system usability in other contexts [33, 91], its application within mindfulness meditation apps has not yet been
fully explored. This paper is the first work to integrate respiration feedback and breathing statistics into a
mindfulness app.

The second technical challenge is the lack of any quantitative method to measure changes in mindfulness
skills—such as concentration, sensory clarity, and equanimity [65]—during digital mindfulness training. Current
approaches rely on self-report questionnaires [32, 68], which are time-consuming, intrusive, and subjective, often
leading to lower user engagement. To overcome this limitation, we develop a deep learning (DL) algorithm
that uses accelerometer data to estimate changes in mindfulness skills after each guided session. This DL-based
solution eliminates the need for self-reporting, providing a scalable and objective way to measure mindfulness
progress while minimizing user burden.

In this study, we collect data from 40 participants, completing 261 mindfulness sessions, to evaluate the impact
of respiration biosignal feedback on system usability. We develop a respiration rate tracking algorithm that not
only estimates respiration rate in the range of 4-9 that is crucial for mindfulness meditation, but also accurately
tracks natural breathing rate (12-20 bpm). Our evaluation of existing methods shows that the algorithms developed
using natural breathing rate fail to detect the low breathing rate. Additionally, we propose the first study to
quantify the change in mindfulness skills during meditation using accelerometer data based on respiration
changes. We train session-level data to develop the deep learning model to detect the mindfulness change. We
integrate the respiration chart, respiration statistics, and mindfulness change in the commercial mindfulness app,
Equa, to improve our app’s usability, user engagement, and mindfulness experience. We conducted a user study
spanning upto 21 days using the session-level feedback. Our results show higher system usability, mindfulness
skills change, and user engagement.

The contribution of this paper is as follows:

o We develop a respiratory rate detection algorithm that accurately tracks both slow (4-9 BPM) and normal
(10-30 BPM) respiration rates, addressing the challenge of monitoring breathing patterns during mindfulness
meditation.

o We design a deep learning model to estimate mindfulness skill progression—concentration, sensory clarity,
and equanimity—using accelerometer-derived respiration data, making it the first approach to quantitatively
track mindfulness skill development using physiological signals in digital mindfulness interventions.

e We integrate real-time respiration tracking, mindfulness skill assessment, and breathing statistics into a
mindfulness app, providing users with personalized feedback to enhance their meditation experience.

e We conduct a user study to evaluate the impact of respiration biosignal feedback on system usability,
demonstrating its effectiveness in improving engagement and self-awareness.

2 BACKGROUND AND RELATED WORK
2.1 Respiratory Biomarker Estimation

Respiration rate is clinically measured using sensors to detect air pressure near the mouth and nose [7]. Various
sensors, e.g., motion [84], audio [3, 53], and camera [11], estimate respiration rate with wearable systems.

Motion sensors, i.g., inertial measurement unit (IMU), are placed on the chest, head, and wrist to sense breath-
related body movement and infer the respiratory parameters from it [38, 39, 84, 94]. Unlike smartphones, other
wearable motion sensors on the chest are not ubiquitous and scalable. Smartphone IMU-based breathing bio-signal,
e.g., breathing phase and breathing rate, estimators have shown promising results for pulmonary patients [4, 20].
Rahman et al. [84] achieves impressive performance using three different algorithms contextually: FFT, peak
detection, and Zero cross-detection. However, they only consider short-duration breathing tasks and do not
consider low-breathing rate detection.
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Some recent works exploited video-based solutions to estimate breathing rates [9, 11, 87]. Bae et al. [11] place
a camera at the same height as the participant’s face and record the change in motion during inhalation and
exhalation. This approach requires adequate lighting conditions and proper placement. Alnaggar et al. [9] also
use video to estimate respiration rate with 1.62 MAE, but the pearson correlation coefficient (PCC) is very low.
However, these approaches are unsuitable for passively monitoring mindfulness meditation without imposing
additional costs or distracting users from the mindfulness training. Besides, video-based solutions fail to measure
low breathing rates from 4-9 bpm.

Smart watches can be a usable solution, as they don’t interrupt the users’ natural interaction with the device.
Many previous works used IMU from watches [94] to estimate the breathing rate. While SleepMonitor [94]
achieved impressive performance, they evaluated their approach during sleep, which does not incorporate the
low breathing rates, which is crucial in mindfulness training. Additionally, most works discard noisy signals
by employing signal processing or machine learning techniques, which improves accuracy but also discards
breathing sessions. For example, WearBreathing [59] achieved impressive accuracy (MAE 1.09 BPM) with only
7-16.5% data retention in a resting position (sitting, standing, and lying) on COPD patients. Such a low retention
rate is useless to the user, as they cannot make successful measurements in most attempts. Therefore, we need
a more usable solution that estimates the breathing rate with reasonably good accuracy and retention rate.
Moreover, many commercial watches do not allow the IMU data from watches with a proper sampling rate, which
makes it less desirable for a scalable solution.

Acoustic solutions have also been used for respiratory biosignal estimation [6, 42, 92]. Recent works on audio-
based respiratory signal estimation focus on pulmonary patients [42], guided breathing exercises [92], or physical
exercises [53]. Breeze [92] detects breathing phases during controlled breathing exercises, consisting of four
seconds of inhalation through the nose, two seconds of exhalation through the mouth, and four seconds of pause.
BreathTrack [42] develops an acoustic breathing phase detector that is trained using guidance from the IMU
collected from the chest. However, BreathTrack focuses on pulmonary patients and aims to differentiate between
healthy and clinical participants. The most recent work from Ahmed et al. [6] achieves 1.72-1.94 mean absolute
error (MAE) in estimating respiration rate. However, their work collects data from in-ear microphones and IMU,
which are publicly inaccessible and, thus, not a scalable solution. Kumar et al. [53] developed a multi-tasking
model to detect respiration rate during exercise from audio signals’ Mel-Filter Bank energy (MFB). Breathing
audio signals during exercise have some advantages over natural breathing in that they are more audible and
have more frequency content. Moreover, none of these works support low respiration rate estimation, which is
crucial for predicting mindfulness skills.

In this paper, we focus on estimating respiration rates using a smartphone accelerometer placed on the chest,
offering a ubiquitous and scalable solution with no additional cost. Our goal is to accurately detect low respiration
rates (4-9 bpm) alongside natural breathing rates (10-30 bpm), which are crucial for predicting mindfulness skills.

2.2 Mindfulness Detection

Over the past two decades, there has been significant growth in scientific research on mindfulness interventions
and the development of mindfulness skills [26]. Mindfulness interventions have been shown to increase self-
reported mindfulness skills reliably [104] and to improve a broad range of health and well-being outcomes
in randomized controlled trials [19, 26]. There has been considerable debate on the optimal ways to measure
mindfulness skill development in this emerging literature. However, in recent mindfulness intervention studies,
one approach is to teach people mindfulness skills such as concentration, sensory clarity, and equanimity in a
unified mindfulness curriculum. Then, operational definitions of these measures are described to participants
in the mindfulness intervention to measure these skills (i.e., the participants are familiar with them from their
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Fig. 2. Overview of the smartphone app modules. Post assessments provide ground truth to develop algorithms for the
feedback module. The main contribution of this paper is the development, integration, and study of the feedback module
highlighted in blue.

mindfulness training programs). Smartphone-based Unified Mindfulness training programs in initial placebo-
controlled clinical trials seem compelling [61, 64, 65]. Previous studies utilize trait bases measures of mindfulness
skills, such as the trait Mindful Attention Awareness Scale (MAAS) [68] or Five Facet Mindfulness Questionnaire
(FFMQ) [32]. These kinds of measurements are not adequate for the large-scale implementation of mindfulness
meditation. In this paper, we measure these mindfulness skills sensitively with a single-item measure of each skill
before and after each guided mindfulness training session. Thus, in our present work, we develop an accelerometer
signal-based classification model that can predict these changes.

3 OVERVIEW OF THE MINDFULNESS TRAINING SMARTPHONE APP

The mindfulness training app we use in this study is a commercially available app, Equa [41], designed to
provide evidence-based instruction in training three core mindfulness skills: concentration, sensory clarity, and
equanimity. We integrate guided meditation sessions with biosignal feedback and track mindfulness progress in
the app. As illustrated in Figures 2 and 3, the proposed application delivers a structured curriculum tailored to
each user’s mindfulness journey, offering personalized feedback based on their physiological data and session
performance. We integrate the feedback module with the app’s existing training and self-assessment modules.

Training Module. This module consists of two submodules: (a) training curriculum and (b) meditation training.

a) Training Curriculum. The introductory curriculum consists of 14 interactive and branching lessons. The
curriculum has demonstrated an immediate dose-response effect comparable to the Mindfulness-Based Stress
Reduction (MBSR) program [45, 67]. The curriculum is evidence-based [26, 61, 62, 64, 65] and interactive, allowing
users to navigate through lessons using screen taps. It also encourages the integration of mindfulness into
everyday activities to enhance the long-term success of mindfulness training [61, 70]. By leveraging principles
from intelligent tutoring systems [10, 102], the smartphone app is the first meditation app to offer this type
of in-lesson interactivity, in contrast to traditional digital apps that rely primarily on static, one-way guided
meditation audio libraries.

(b) Meditation Training. Following the baseline assessment, participants engage in a 10- to 20-minute training
session, during which their respiration signals are continuously tracked (see more technical details in section 5).

Self-Assessment Module. The assessment module aims to collect relevant ground truth to develop algorithms
for the feedback module. The app begins with a comprehensive pre-training assessment that evaluates users’
baseline mindfulness skills and includes self-report ratings on the three core mindfulness skills. After each
session, users complete the same self-assessment to measure any immediate changes in their mindfulness skills.
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Fig. 3. Screenshot of different modules deployed in Equa. The training module consists of necessary instructions for
mindfulness meditation training, and the assessment module captures the baseline mindfulness state before the session.
Finally, the feedback module provides the users with biosignal feedback such as a respiration chart, respiration statistics,
and estimated mindfulness change.

These self-reported ratings of concentration, sensory clarity, and equanimity serve as ground truth for analyzing
the collected respiration data and detecting shifts in mindfulness. While self-reporting is the current way to
assess mindfulness skills, and these reports help establish initial benchmarks, a key benefit of mindfulness
estimation from accelerometer data is that it minimizes the need for repeated, time-intensive self-assessments
after each session—an approach that can reduce user satisfaction in digital mental health apps. By relying on
physiological and sensor data to measure mindfulness improvement (see section 6), the app aims to streamline
the user experience.

Feedback Module. After each session, participants receive two forms of feedback: respiration biosignal feedback
and whether their mindfulness skills improved (or not).

o Biosignal feedback. We display a respiration chart from the session, offering users insights into their phys-
iological responses during the guided session. Our respiration rate tracking algorithm (see section 5) is
designed to accurately track both slow and natural respiration rates using a smartphone accelerometer
while also detecting motion artifacts that may compromise the quality of the data. In such cases, users
receive a notification indicating potential data issues, ensuring transparency and trust in the feedback.

o Mindfulness progresses feedback. The app estimates the user’s improvements (or lack thereof) in mindfulness
skills, such as concentration, sensory clarity, and equanimity. Our deep learning model allows us to predict
the progression of these mindfulness skills based on the smartphone accelerometer data collected during
each session. The detailed methodology and performance evaluation of mindfulness change assessment are
discussed in the mindfulness progress estimation and algorithmic evaluation sections (see section 6 and
8.2).
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Table 1. Participant statistics in different studies. Study 1 and Study 2 are conducted in a controlled environment setting,
whereas Study 3 is conducted in the wild. In addition to testing the developed algorithm, study 3 is used for user study.

Study | Environment Participants | Sessions | Algorithm Development | Algorithm Testing | User Study
1 Controlled (Lab) 8 33 Yes Yes No
2 Controlled (Lab) 10 24 No No Yes
3 Natural (home) 22 149 No Yes Yes

Table 2. Breakdown of participants’ demographics in terms of gender, race, and meditation experience in studies 1, 2, and 3.
All studies have a balanced distribution of participants.

Category ‘ Group Study 1 (%) Study 2 (%) Study 3 (%)
Male 50 40 50
Gender Female 50 40 50
Non-binary - 20 _
Black 12 - 4
East Asian 12 10 9
South Asian 38 20 14
Race White 25 50 68
Other - 10 -
Mixed 13 - 5
Not at all 12 20 4
A few times 37 40 23
Meditation Experience | Periodically 25 20 41
Frequently 13 10 23
Everyday 13 10 9

4 DATA COLLECTION AND STUDY PROTOCOL

To develop and evaluate our proposed algorithms, we conduct three data collection studies. The first two are
conducted in a controlled lab environment, while the remaining two took place in real-world settings with
participants using the app. Figure 7 shows the lab setup and the screen of the app for mindfulness training.

Study design and participants. In total, we collect data from 40 participants, with 18 participating in lab
studies and 22 in-the-wild studies. Table 1 shows the participant statistics of all the studies. However, some data
samples are not used due to missing ground truth scores or data corruption. The demographic distribution of
participants is presented in Table 2. Participants are recruited through community outreach, including online
postings, mailing lists, and social media platforms. Eligibility criteria included being fluent in English, being at
least 18 years of age, being willing to engage in guided mindfulness meditation sessions, and being willing to
wear physiological measuring equipment during meditation training. Initial eligibility screenings were conducted
via email, followed by a formal in-person screening at the first session to confirm participation. All participants
were first-time users of the app, ensuring consistency in baseline familiarity across study conditions.

a) Lab study Protocol (Studies 1 and 2): In the lab studies, participants complete a 14-day mindfulness meditation
program consisting of 20-minute lessons while their respiration data are collected using a Hexoskin smart shirt
and an iPhone X mounted on a chest strap. Participants are randomly assigned into two conditions: a biosignal
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Fig. 4. Overview of respiration rate detection algorithm. We pre-process the accelerometer data by removing jitter and
motion artifacts before using the proposed peak detection algorithm. Final respiration rates are shown to the user after
additional post-processing.

augmented condition and a control condition. Following the mindfulness lessons, participants in the biosignal
augmented condition are exposed to a respiration biosignal feedback chart, which displays the respiration rate
trend throughout the lesson. Participants in the control condition are not exposed to this chart. These sessions
provided high-fidelity respiration data, which are used as the ground truth for algorithm development. Study 1
included 88 sessions with 8 participants, while Study 2 included 24 sessions with 10 participants. Both studies
focused on developing and validating the respiration rate estimation algorithm, testing the accuracy of the
mindfulness skill estimation model, and user satisfaction with the app.

b) In-the-Wild Study Protocol (Study 3): In Study 3, conducted remotely, 22 new participants use the mindfulness
meditation app in real-world environments. Similar to the lab study, chest straps and smartphones are used for
data collection. This study spans over 21 days. Randomization into the two conditions for study 3 is conducted
following the same protocol as in Studies 1 and 2. Unlike studies 1 and 2, in this study, participants can finish as
many sessions as they want and end any session at any time. After 21 days of study, we use the average number of
completed sessions and the average number of minutes in meditation to evaluate user engagement. Participants
are instructed to complete sessions in quiet, stable environments to minimize movement artifacts. A total of 149
sessions are collected in this study. This study focused on evaluating user satisfaction, user engagement, and the
effectiveness of the mindfulness skill estimation algorithm in natural settings.

Physiological and Psychological Data Measures. Across all studies, chest movements related to breathing are
tracked using the smartphone accelerometer. In Studies 1 and 2, physiological data such as respiration rate and
motion are also collected using Hexoskin smart shirts, which serve as ground truth for developing the respiration
tracking algorithm. Participants also complete self-report assessments of mindfulness skills—concentration,
sensory clarity, and equanimity—before and after each session. These self-reported measures provide a baseline
for analyzing mindfulness progression and serve as the ground truth for evaluating the deep learning models.

Ethical Considerations. The study was approved by the Institutional Review Board (IRB) of Carnegie Mellon
University. Before data collection began, informed consent was obtained from all participants. All data were
anonymized and stored on encrypted servers to ensure participant privacy. Participants were informed about the
nature of the data being collected, their right to withdraw from the study at any time, and the potential use of
their anonymized physiological data in future research publications.

5 SLOW-PACED RESPIRATION RATE ESTIMATION USING ACCELEROMETER FOR BIOSIGNAL
FEEDBACK MODULE

In the absence of a reliable algorithm for accurately detecting both slow-paced and regular respiration rates,

we develop a novel respiration rate estimation method. Our algorithm leverages accelerometer data, which has

been widely utilized in regular or high respiration rate estimation [83, 84, 94]. However, accelerometer data is

often contaminated by two significant noise sources: jitter and motion artifacts, which obscure the respiratory
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signal—especially for slow respiration rates, where the changes in the accelerometer are smaller and closer to the
noise level. To address these challenges, we propose a four-step algorithm for respiration rate extraction. The
first two steps involve noise reduction, focusing on removing jitter and motion artifacts. The third step evaluates
the quality and reliability of the signal post-noise removal. Finally, the fourth step estimates the respiratory rate
from a single sensor stream, providing an accurate measurement of both slow and regular breathing patterns. An
overview of the algorithm is shown in Figure 4.

Jitter Removal. Jitter refers to high-frequency noise introduced by inertial sensors, often caused by electrical
disturbances such as power supply fluctuations, electromagnetic interference, or errors during analog-to-digital
conversion. This noise can interfere with the detection of accurate respiratory signals, potentially leading to
incorrect peak detection and distorted frequency content. The effect of jitter is particularly significant during
slow breathing, where the subtle changes in acceleration are easily masked by high-frequency noise. To address
this, we apply a low-pass Butterworth filter [90] with a cutoff frequency of 10 Hz. The Butterworth filter is
selected for its superior performance in noise reduction [13, 34, 73].

Motion Artifact Removal. Motion artifacts, commonly observed in IMU data, are caused by sudden changes
in the user’s posture or movement of the phone. These artifacts often produce large amplitude signals that
overshadow respiratory signals, making accurate respiration rate extraction challenging. To mitigate this, we
apply a local mean removal technique, where the mean of a short window centered around each value is subtracted
from the raw sensor measurements. Local mean removal significantly reduces motion artifacts, enhancing the
accuracy of respiration rate estimation. For additional denoising, a 13-point moving average filter (i.e., a window
of 1.3s) is subsequently applied.

Reliability Assessment. Although the previous noise removal steps effectively reduce jitter and motion artifacts,
continuous user movement or improper phone placement can still lead to inaccurate respiration rate estimations.
To address this, we introduce a signal quality and reliability assessment step, which acts as a safeguard for our
respiration rate estimation process. This step is crucial because poor signal quality can distort the entire feedback
loop. We assess signal quality by calculating the first and third quartiles, along with the interquartile range
(IQR), for each 20s window. If any data value at that window exceeds the third quartile with an addition of 0.8
times the IQR value or falls below the first quartile subtracted by 0.8 times the IQR value, we flag that value
as compromised. When compromised values account for more than 25% of the total data length, the signal is
discarded, and a “signal compromised” message is provided to the user. Additionally, we also detect if the phone
is on the chest or staying flat on the table. We observe that if the phone is flat on the surface, we get steady and
flat accelerometer data with occasional spikes. To identify if the phone is on a flat surface, we take the average of
every 30s segment of data and compare it with the average of the whole file. If the difference between the two
averages is more than 0.02, we count that as a faulty segment. If the number of faulty segments is lower than 30%
of the total duration of the session, we determine that the data does not have enough variation to be on the chest.
We discard the signal with the ’phone is not on chest’ message to the user.

Instantaneous Respiration Rate Estimation. After filtering and signal quality assessment, we apply a peak
detection algorithm that identifies all local maxima by comparing each data point with its neighboring values [103].
A peak, or local maximum, is defined as any sample whose two immediate neighbors have smaller amplitudes,
with each peak corresponding to a breath (inhalation). Our algorithm is optimized to detect respiration rates
between 4 and 30 breaths per minute, encompassing both slow and natural respiration rates. To further minimize
noise interference, we discard consecutive peaks occurring within 2 seconds and only consider peaks with at least
50% prominence. Peak prominence is defined as the vertical distance between the peak and its lowest contour line
and is used to ensure that only significant chest movements associated with breathing are counted. To compute
the respiration rate for each minute, we divide 60 by the duration between two consecutive peaks. We then
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Fig. 5. Overview of the algorithm for estimating mindfulness progress via accelerometer data. The data are passed through
preprocessing and augmentation before model inference and finally through a post-processing step to estimate changes in
concentration, sensory clarity, and equanimity.

average the respiration rate over seven cycles to calculate the instantaneous rate, ensuring stability, as respiration
rates typically do not fluctuate rapidly unless during intentional breathing exercises. This method reduces errors
due to inaccurate peak detection and enhances the robustness of respiration rate estimation.

6 ESTIMATING MINDFULNESS PROGRESS VIA ACCELEROMETER FOR MINDFULNESS
PROGRESS ASSESSMENT MODULE

We propose a deep neural network (DNN) for estimating changes in mindfulness using accelerometer data from
a smartphone. This section outlines our data preparation pipeline, the network architecture, training parameters,
and post-processing steps involved in our methodology. An overview of the algorithm is shown in Figure 5.

Data Pre-processing and Augmentation. To process the accelerometer data from mindfulness sessions of
varying durations, we segment the data into non-overlapping two-minute intervals. This segmentation is based
on prior research showing that even brief periods of mindfulness practice, between 60 and 90 seconds, can
significantly influence mindfulness levels [29]. By using two-minute segments, we ensure that the data is both
manageable in size and sufficiently detailed to capture meaningful changes in mindfulness. After segmentation,
we obtained 287, 263, and 379 positive samples and 374, 398, and 282 negative samples for concentration, sensory
clarity, and equanimity, respectively, revealing a substantial class imbalance between the two classes. To handle
this imbalance, we augment the dataset by resampling the class that has a lower amount of data. We use raw
accelerometer data rather than the filtered or processed data from the previous section, as the deep learning
model is capable of denoising the data itself and capturing relevant information [36, 56].

Neural Network Architecture. Figure 6 shows the network architecture of the proposed mindfulness progress
estimation model that takes the segmented accelerometer data as input and estimates changes in mindfulness
skills—concentration, sensory clarity, and equanimity. The architecture combines a 1D ResNet with a Gated
Recurrent Unit (GRU) to effectively handle sequential dependencies in time-series signals like accelerometer data.

We modify ResNet architecture (ResNet-1D) [37] to effectively capture spatial and temporal patterns in the
accelerometer data. This ResNet-1D incorporates residual blocks that overcome the vanishing gradient problem
and allow the networks to be deeper without loss of performance. Each residual block consists of one-dimensional
convolutional layers, batch normalization, and Hardwish activation, which ensures stable and efficient training.
The blocks come in two types: identity blocks, where the input is directly passed to the output, and convolutional
blocks, which use an additional convolution layer in the shortcut path to adjust the dimensions when needed.
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Fig. 6. Network architecture for mindfulness skills estimation. The architecture shows a modified version of ResNet [37] to
capture information from accelerometer data with a convolutional block followed by ResNet blocks and a GRU block. GRU
block allows the capture of temporal information for the data.

The network begins with an initial one-dimensional convolutional layer, followed by eight residual blocks. To
reduce dimensionality while preserving key features, global average pooling is applied, and the architecture
concludes with a flattened layer for further processing. Following the ResNet-1D layers, a GRU [22] is integrated
to capture the temporal dependencies in the IMU data. GRUs, a variant of recurrent neural networks (RNNs)
[72], are well-suited for processing sequential data, making them ideal for identifying patterns related to changes
in mindfulness skills over time. We employ one GRU layer with 128 hidden neurons. By retaining relevant
information from previous time steps, the GRU helps the network effectively recognize shifts in concentration,
sensory clarity, and equanimity throughout the mindfulness sessions.

Training and Model Evaluation. The network is trained using a binary cross-entropy loss function. We use
Adam to optimize our model, with a learning rate initially set at 0.0001. We employ a learning rate scheduler to
mitigate overfitting by adjusting the learning rate dynamically based on the model’s performance and train the
model for 50 epochs. The training is conducted using an NVIDIA RTX 3090Ti GPU, and the best model is saved.
The final model is evaluated based on its ability to accurately predict changes in mindfulness skills as compared
to self-reported measures, which serve as the ground truth.

Post-Processing and Output Interpretation. To ensure robust predictions, a majority voting approach was
applied during post-processing, where classification outputs from each two-minute segment were aggregated to
determine the overall change in mindfulness skills across the entire session.

7 INTEGRATION OF FEEDBACK MODULE INTO SMARTPHONE APP

To enable real-time biofeedback and mindfulness skill estimation, we integrated our respiration tracking and
mindfulness assessment algorithms into the backend of a commercial mindfulness meditation app (name withheld
for anonymity). This integration allows the system to collect sensor data during meditation sessions and provide
personalized feedback upon completion.

The app records accelerometer and gyroscope data at 100 Hz, storing it in Firebase Storage. Structured session
metadata and feedback results are maintained in Firebase Firestore (NoSQL). After each session, Google Cloud
Functions are triggered via a monitoring service subscribed to the data storage bucket. These functions execute
Python scripts that process the sensor data, estimate respiration rates, and compute mindfulness scores. The
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Fig. 7. Data collection setup in the lab and smartphone app training screen. Hexoskin is used to capture the ground truth
for developing a respiration rate tracking algorithm. The smartphone captures the necessary accelerometer data utilized to
develop our proposed algorithms.

processing typically completes within 0.2 seconds, and results are written back to Firestore via a RESTful API,
enabling the app to update feedback visualizations (e.g., trend graphs, score tables) for the user. Feedback is
provided post-session rather than in real-time to avoid interrupting the meditation experience and to ensure
robust data processing.

The mobile app is cross-platform (iOS and Android), with the frontend dynamically retrieving feedback data
from Firestore APIs. The backend architecture scales horizontally using Google Cloud’s serverless infrastructure
to support concurrent users without significant latency. To maintain data security and privacy, all sensor data is
anonymized and transmitted using encrypted channels, following standard company privacy policies. Sessions
with insufficient sensor data quality are flagged, and feedback is withheld to maintain accuracy.

The architecture and integration workflow are modular to support integration with other mindfulness or
biofeedback applications. Backend algorithms and deployment pipelines are maintained through version control
systems, supporting continuous deployment and future updates. The design also allows for easy integration of
additional sensors or algorithms in future iterations.
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8 RESULTS

In this section, we present the technical evaluation of our proposed algorithms. To assess the effectiveness of
our proposed algorithms', we conduct a comprehensive evaluation using the data collected from our studies.
Specifically, we measure the accuracy of the respiration rate estimation algorithm and evaluate the mindfulness
skill change detection algorithm’s ability to identify shifts in mindfulness skills using accelerometer data, demon-
strating their effectiveness using data from both controlled laboratory settings and real-world environments.

8.1 Respiration Rate Estimation Algorithm

We assess the performance of our respiration rate estimation algorithm using data collected from study 1. We first
compare the performance of our proposed algorithm against the state-of-the-art (SOTA) respiration detection
algorithms using IMU. Then, we dive deeper into the performance analysis of our algorithm by analyzing it
against the ground truth itself.

Evaluation Metrics. We employ two widely recognized metrics, Mean Absolute Error (MAE) and Pearson
Correlation Coefficient (PCC), to evaluate the performance of our algorithm.

e MAE is a common metric used in respiration rate estimation studies [59, 82, 84]. It measures the average
absolute value difference between the estimated respiration rates and the ground truth values. MAE is
defined as: | |

BRyt; — BRest;
MAE = ; - 1)
Here, n is the number of samples, BR,; is the estimated respiration rate, and BRy, is the ground truth
respiration rate. A lower MAE indicates higher accuracy in estimation. In this study, we calculate the
MAE by comparing the algorithm’s estimated respiration rates to the ground truth data obtained from the
Hexoskin smart shirts.

e PCC measures the linear correlation between BRy; and BR,,; [89]. PCC is an important metric for under-
standing the algorithm’s performance to identify respiration rates for long sessions. PCC provides insight
into how well the predictions follow the breathing patterns. PCC is defined as:

cov(BRys, BRest)
~ std(BRy;)std(BRest)

Here, std and cov refer to standard deviation and covariance, respectively. The PCC value ranges between
—1 and +1 (1) A PCC closer to 1 indicates a strong positive linear relationship, (2) A PCC near 0 suggests
no linear correlation, and (3) A PCC closer to —1 indicates a strong negative linear relationship. A higher
PCC (closer to 1) signifies that the estimated respiration rates closely follow the patterns of the ground
truth, demonstrating the algorithm’s effectiveness in tracking respiration trends over time.

)

Comparison against SOTA IMU To Respiration Rate Detection Algorithms. We evaluate the performance
of our respiration rate estimation algorithm against three state-of-the-art accelerometer-based methods: (1)
BioWatch [39], (2) SleepMonitor [94], and (3) InstantRR [84]. Both BioWatch and SleepMonitor employ Fast Fourier
Transform (FFT)-based algorithms on IMU data collected from smartwatches. InstantRR utilizes a combination of
FFT-based algorithms, peak-detection algorithms, and Zero-Crossing Rate (ZCR) algorithms for different body
positions, each with specific data processing techniques. As illustrated in Figure 8, our method outperforms
BioWatch, SleepMonitor, and all three algorithmic variations of InstantRR. Specifically, our algorithm achieves
13-73% higher PCC and reduces MAE by 40-70% across various respiration rates. This significant improvement is
attributed to our algorithm’s robust performance in accurately estimating both slow and regular respiration rates.

1Codes and dataset can be found at https://bashlab.github.io/meditite_project/
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Fig. 8. Performance comparison between the proposed algorithm and baseline algorithms. The proposed algorithm demon-
strates less MAE and high PCC compared to existing SOTA methods.
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Fig. 9. The mean absolute error for different respiration rates shows that the proposed algorithm performs consistently over
a wide range of respiration rates, including low respiration rate zones with a lower MAE compared to the SOTA methods.

Figure 9 illustrates the average performance of all algorithms across different respiration rates observed in
study 1, aggregated over all participants. The results demonstrate that our algorithm consistently maintains
a low MAE across the entire range of respiration rates, effectively detecting both slow and natural breathing
patterns. Notably, our algorithm achieves less than a 2 BPM error up to 19 BPM. In contrast, the compared
methods perform adequately within the 8-15 BPM range, but exhibit decreased accuracy at both low respiration
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Fig. 10. Bland-Altman plot for respiration rate estimation using the proposed algorithm shows that most of the data are
within the limits of agreement, indicating the effectiveness of our proposed algorithm.

rates—which are prevalent during mindfulness practices—and very high respiration rates. Their reliance on FFT
and ZCR techniques, which have insufficient frequency resolution and increased susceptibility to noise, makes
them less effective for slow-paced respiration. In contrast, our algorithm effectively captures slow breathing
patterns through tailored noise reduction techniques and adaptive peak detection mechanisms. By addressing the
challenges of low-amplitude signals and minimizing the impact of motion artifacts, our method provides more
reliable respiration rate estimations in contexts where slow breathing is prevalent, such as mindfulness training.

Agreement Analysis Using Bland-Altman Plot. To further assess the agreement between our estimated
respiration rates and the ground truth, we employ a Bland-Altman plot [18]. The Bland-Altman plot is a method
used to analyze the agreement between two quantitative measurement techniques by plotting the difference
between the methods against their mean. Figure 10 presents the Bland-Altman plot for our data. We plot a random
sample of data points for clarity; however, the entire dataset is used to calculate mean differences and limits of
agreement. Most of our algorithm’s estimations are within the limits of agreement. Combining these findings
with the high PCC reported earlier, we conclude that there is substantial agreement between our estimated
respiration rates and the ground truth data from Hexoskin. This validates the accuracy and reliability of our
algorithm in estimating respiration rates across various breathing patterns.

Ablation Study and Parameter Tuning. This section examines the impact of various parameters on the
algorithm design, providing rational explanations for our design decisions.

Effect of Local Mean Removal. Figure 11 illustrates the rationale and effectiveness of applying local mean removal
compared to global mean removal for motion artifact suppression. Global mean removal assumes stationarity
over the entire signal, which is often invalid during respiration monitoring, especially in the presence of motion
artifacts or shifts in baseline. In contrast, local mean removal dynamically adapts to temporal fluctuations,
allowing for better isolation of the respiration component from transient noise and motion disturbances. Local
mean removal significantly reduces respiration rate estimation error, validating its role in enhancing signal
quality for reliable biosignal tracking in real-world scenarios.
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Fig. 11. Effect of applying a) local mean removal, b) global mean removal techniques on data preprocessing. Using the local
mean removal can remove the motion artifacts more efficiently than using the global mean removal technique.

Effect of Prominence. The prominence parameter plays a crucial role in peak detection for accurate respiration
rate estimation. Figure 12a illustrates how varying prominence values affect algorithm performance. Setting the
prominence too high suppresses smaller, yet valid, respiration peaks, leading to missed detections and degraded
performance. Conversely, a low prominence threshold allows excessively small-amplitude peaks, often caused by
noise or motion artifacts, resulting in false detections. Through systematic fine-tuning, we identified an optimal
prominence value of 50%, which balances sensitivity and specificity, achieving the best respiration rate estimation
accuracy in our dataset.
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Fig. 12. Effect of a) Prominence and b) Averaging window (breathing cycles) on the performance of the respiration rate
algorithm allows us to select the optimized parameters to estimate the respiration rate with high accuracy.

Effect of Averaging Window (Breathing Cycles). Figure 12b illustrates how the number of breathing cycles used
for averaging impacts respiration rate estimation performance. Using fewer cycles enables more immediate,
responsive estimates, but increases susceptibility to errors from false peak detections. In contrast, averaging over
a larger number of cycles smooths out these fluctuations, improving accuracy but introducing latency in the
feedback. To balance responsiveness and stability, we empirically determined that averaging over seven breathing
cycles provides optimal performance with minimal delay, ensuring reliable respiration rate feedback without
compromising timeliness.
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Effect of Multiplier on Data Reliability Assessment. To assess the reliability of sensor data, we compute the inter-
quartile range (IQR) within each window and apply a multiplier to define the acceptance threshold. Specifically,
we use a multiplier of 0.8, selected empirically to balance data retention and algorithm performance.

Figure 13 illustrates how varying the multiplier affects the retention rate of data windows. A smaller multiplier
imposes a stricter reliability threshold, effectively filtering out noisy or unreliable data. However, this significantly
reduces the retention rate, which is impractical for real-world applications as it limits the amount of usable data,
potentially degrading system usability and user engagement.

Conversely, a larger multiplier relaxes the threshold, increasing the retention rate but allowing more noisy
data to pass through. This can lead to a drop in the performance of both the respiration rate estimation and
mindfulness skill assessment algorithms, negatively impacting user satisfaction due to less reliable feedback.

Through empirical evaluation, we identified 0.8 as the optimal multiplier, ensuring a reasonable retention rate

without compromising the accuracy of feedback provided to users.
Parameter Sensitivity Analysis in Flat Surface Detection. Flat surface detection acts as an additional data reliability
checkpoint, ensuring that sensor data is processed only when the phone is appropriately placed on the user’s
chest, not on unintended surfaces. This mechanism improves system usability by preventing unreliable data from
influencing feedback. To develop and fine-tune the flat surface detection algorithm, we augmented our dataset
with 20 sessions collected while the phone was placed on various flat surfaces (e.g., table, floor, book). We used 15
of these sessions along with 15 valid meditation sessions from Study 1 for training, and tested on the remaining 5
flat-surface sessions and 15 additional meditation sessions.

Figure 14, and 15 present the sensitivity analysis of the detection threshold and window size parameters,
focusing on precision performance. Precision is prioritized to minimize false positives, ensuring that valid
meditation sessions are not mistakenly classified as flat surface instances, which would otherwise result in data
loss and reduced user satisfaction. Through this analysis, we identified an optimal balance between detection

sensitivity and data retention, ensuring reliable flat surface identification without compromising the inclusion of
valid sessions.
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Fig. 13. Effect of multiplier on data reten-Fig. 14. Effect of threshold on the perfor-Fig. 15. Effect of window-size on the per-
tion rate and performance of algorithm. mance of detecting flat surface. formance of detecting flat surface.

Discussion. Previous works on breathing rate detection mainly target natural or patient breathing, where
chest movements are more prominent, making detection easier. Natural breathing rates (12—-20 bpm [76]) and
pulmonary conditions [84] often produce strong signals, allowing frequent peak detection in accelerometer data.
However, focusing solely on high breathing rates risks losing low-frequency inhale/exhale peaks during filtering.
As prior algorithms were optimized for natural rates, their performance degrades at low breathing rates. In
contrast, our algorithm is specifically designed for low breathing rates, with parameters fine-tuned to capture
peaks during both low and natural breathing. Additionally, careful selection of prominence to capture small
amplitude peaks and use of an averaging window to post-process the respiration rate ensures high performance
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Fig. 16. Performance comparison of smartphone accelerometer with estimated respiration for mindfulness change estimation.
Using accelerometer data over raw respiration rate performs better in all three mindfulness change predictions.

in detecting low breathing rates. When a user has a low breathing rate, actual peaks occur after a long duration
(15s for 3 bpm). Any instantaneous peaks during this period will risk the accuracy of the algorithms. The use of
an averaging window helps us to mitigate this erroneous peak detection and maintain high performance in a
low-breathing-rate zone.

Implications and Conclusion. Overall, these results confirm that our algorithm not only maintains low MAE
across different respiration rates but also shows strong agreement with established measurement techniques. This
underscores its effectiveness in providing accurate respiration rate estimations, which is critical for applications
like mindfulness training, where both slow and natural breathing patterns are prevalent.

8.2 Mindfulness Progress Estimation Algorithm

We assess the proposed algorithm’s performance by comparing its effectiveness against other network architec-
tures and against other data modalities.

Evaluation Metrics. We evaluate the proposed algorithm using three popular metrics: precision, recall, and F1
score [17, 47, 48, 105].

e Precision measures how many of the predicted positives are truly positive. Precision is defined as:
TP

Precision = — - 3
recision = =g (3)
Here, TP and FP stand for true positive and false positive, respectively.
o Recall measures how many of the actual positives the model correctly identified. Recall is defined as:
TP
Recall = ——— (4)
TP+ FN

Here, FN refers to false negatives.
o F1-score is the harmonic mean of precision and recall, balancing both to give a single performance measure,
particularly useful in cases of imbalanced data. F1 score is calculated as:

F1 5 % Precision X Recall 5)
— score =
Precision + Recall

Comparison with Ground Truth. Figure 16 illustrates the results of our proposed model against the self-
reported ground truth. Our model achieves F1-Scores of 82% for concentration, 80% for sensory clarity, and 84%
for equanimity. We observe that the change in equanimity is predicted more accurately by the model than the
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Fig. 17. Performance comparison of various models for estimating change in mindfulness skills. Our proposed model
demonstrated superior performance with 80%-84% F1 score, outperforming others and highlighting its effectiveness in
capturing mindfulness skill progression.

other two skills. This higher accuracy in predicting equanimity may be attributed to the distinct physiological and
behavioral markers associated with this skill during mindfulness practice. Equanimity involves a balanced state
of emotional regulation and reduced reactivity to stressors, which may manifest as steadier breathing patterns
and minimal physical movement—signals that are effectively captured by accelerometer data. The model’s ability
to detect these subtle cues underscores the effectiveness of our model to monitor mindfulness skill progression.

Comparison of Data Modalities. We compare our DL model for estimating mindfulness skill improvements
using two different data sources: raw accelerometer data from smartphones and true respiration rate data
from Hexoskin smart shirts. The inclusion of Hexoskin data serves a crucial purpose—we want to eliminate
any potential errors arising from respiration rate estimation using raw accelerometer data. By using accurate
respiration measurements from the Hexoskin Smart shirts, we aim to understand the true effectiveness of our
algorithm without the confounding effects of estimation inaccuracies. The models are trained on data from study 1,
and inference is conducted on an independent set of data from study 3 (see table 1). For each modality, we explore
various network architectures and report the best results. We choose to compare our accelerometer-based model
with models using true respiration rates because respiration rate is a well-established physiological indicator
associated with mindfulness and relaxation states. By including respiration rate as a baseline modality, we aim
to assess whether accelerometer data can provide additional predictive power over this traditional measure.
Comparing the two modalities allows us to determine the extent to which accelerometer data captures relevant
information for mindfulness skill estimation beyond what is offered by respiration rates alone.

For the accelerometer modality, we employ our proposed ResNet-1D architecture combined with a GRU.
The raw accelerometer data provides a rich and dense dataset with ample data points per segment, making it
well-suited for this DL approach. In contrast, the true respiration rate data from the Hexoskin smart shirts has
significantly fewer data points in each segment, which precludes the use of the same architecture. To address
this, we experiment with two alternative network configurations for the respiration rate modality: (1) a model
consisting of one convolutional layer followed by a GRU layer and a fully connected layer, and (2) a model with
two GRU layers followed by two fully connected layers. We find that the model with two GRU layers performed
better, and thus, we report the results of this model.

Additionally, we investigate commonly used statistical features of the respiration rate, including the mean
respiration rate during meditation, standard deviation, kurtosis, skewness, entropy, and the longest durations at
maximum and minimum respiration rates. Using these features extracted from the Hexoskin data, we employ a
Support Vector Machine (SVM) to estimate changes in mindfulness skills.
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Figure 16 illustrates that the model utilizing accelerometer data achieves a 15.4%-21.9% higher F1 score
than the DL model using true respiration rates and a 13.1%-34.1% higher F1 score than the SVM model using
statistical features derived from respiration rate data. These results demonstrate the superior performance of
the accelerometer modality. The accelerometer data not only captures respiration patterns but also encapsulates
subtle bodily movements and postural adjustments that are relevant to mindfulness practices. This richer dataset
provides additional contextual information indicative of changes in mindfulness skills, leading to more accurate
predictions than models using respiration rates alone. The accelerometer inputs offer a more comprehensive
representation, enhancing the model’s ability to detect changes in mindfulness skills.

Additionally, the performance of the SVM model with the statistical feature set demonstrates the quantitative
relationship between the respiration biosignal and changes in mindfulness skills. However, the SVM model lacks
the capability to capture temporal dynamics in the data, and the limited data points per segment due to lower
sampling rates constrain the deep learning model using respiration rate data. In contrast, our proposed DL model
using accelerometer data effectively captures both spatial and temporal patterns, resulting in better performance
than classical machine learning algorithms like SVM and deep learning models constrained by limited data.

Assessment of Network Architecture Choices. We further evaluate the effectiveness of our proposed network
architecture by comparing it with EfficientNet, a convolutional neural network (CNN) that has been used in
medical image classification and EEG analysis [1, 107]. To train EfficientNet on our dataset, we convert the same
two-minute accelerometer segments used in our model into mel-spectrograms [16, 31]. This conversion allows
us to represent the time-series accelerometer data in a format suitable for EfficientNet, which is designed for
image-like inputs.

As shown in Figure 17, our proposed model outperforms EfficientNet by achieving a 5.9%-12.5% higher F1 score.
While the performance of EfficientNet demonstrates that accelerometer data contains sufficient information
to identify changes in mindfulness skills, our proposed model achieves better results because it integrates
Convolutional Neural Network (CNN) layers with a Gated Recurrent Unit (GRU), effectively capturing both
spatial and temporal dependencies in the data.

The superior performance of our model can be attributed to its ability to capture temporal information associated
with slow-paced respiration rates, which is crucial for accurately predicting improvements in mindfulness skills.
While EfficientNet excels at extracting spatial features from image-like data, it may not effectively model the
temporal sequences inherent in accelerometer data related to mindfulness practices. In contrast, our model’s
architecture is designed to handle time-series data, leading to better overall performance in this context.

Implication and Conclusion. Our approach is grounded in both empirical evidence and theoretical frameworks
linking physiological signals to mindfulness components. Our deep learning model utilizes accelerometer data
captured during meditation sessions to predict changes in mindfulness skills. This choice is informed by research
indicating that respiration patterns, detectable via accelerometry, are closely associated with mindfulness states.
Specifically, slow and controlled breathing has been shown to activate the parasympathetic nervous system,
promoting relaxation and reducing anxiety. These physiological changes are integral to mindfulness practices [69].

Furthermore, our model captures nuanced patterns in the accelerometer data, including breathing rate, vari-
ability, and motion artifacts, which reflect potential distractions or shifts in attention. By analyzing these features,
the model differentiates between various aspects of mindfulness: concentration, sensory clarity, and equanimity.
This aligns with Shinzen Young’s Unified Mindfulness framework [109], which defines mindful awareness as the
integration of these three components.

Overall, these results highlight the robustness of our approach to estimating changes in mindfulness skills using
readily available smartphone data. By accurately predicting improvements in equanimity, concentration, and
sensory clarity, our model demonstrates significant potential for facilitating personalized mindfulness training
through feedback. This approach paves the way for scalable, accessible mental health interventions that leverage
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everyday technology. By specifically comparing the accelerometer-based model with models using true respiration
rates, statistical features, and alternative network architectures like EfficientNet, we establish that accelerometer
data provides a more comprehensive and informative input for predicting mindfulness skill improvements.
The accelerometer captures nuanced bodily movements and temporal patterns that respiration rate data alone
cannot fully represent. Moreover, our tailored DL architecture effectively harnesses this rich data, outperforming
architectures like EfficientNet that are not optimized for time-series data. Our findings suggest that utilizing
accelerometer data in conjunction with advanced DL architectures can significantly enhance the detection of
mindfulness skill progression, offering a valuable tool for personalized mental health support.

9 USER STUDY

In this section, we examine how integrating a respiration biosignal feedback chart into our mindfulness training
application influences both system usability and mindfulness skill development. Usability was assessed using the
System Usability Scale (SUS), while changes in mindfulness skills were evaluated through session-level feedback.

Participants were randomly assigned to one of two groups: (1) the biosignal-augmented group, which received
respiration biofeedback after each session, and (2) the control group, which did not receive any feedback post-
session.

The SUS scores and mindfulness skill changes were analyzed using data from Studies 2 and 3, which together
included 32 participants. User engagement—measured by the number of completed sessions and total meditation
minutes—was evaluated only in Study 3, which involved 22 participants who self-regulated their meditation
practice. In contrast, participants in Studies 1 and 2 were required to complete all sessions, limiting natural
variability in engagement behavior.

Details of each study’s design are provided in Table 1, and participant demographics are described in Section 4.

9.1 Number of Participants selection from Power Analysis

We select the number of participants for our user study by conservatively using the effect size of previous studies.
There is a wide range of studies that examine the effects of adding gamification or user support features to
digital mental health apps on user engagement and performance outcomes [23, 96, 108] . As might be expected,
there’s a wide range of effect sizes for these outcomes (d’s 0.37-1.62). No previous studies to our knowledge
have examined the role of respiration feedback to help us more precisely estimate an effect size, but Tsay et
al. show that performance is significantly better in their gamified learning courses relative to the nongamified
condition (Cohen’s d=1.51) and engagement is positively related to performance [98]. From this previous literature,
we conservatively estimate an effect size of d=1.32 on user engagement in the respiration biosignal feedback
augmented condition relative to the standard no feedback condition. A power analysis using G*Power [46] for
this independent samples t-test, assuming power 0.8 and two-tailed p=.05, indicates that a sample size of at least
22 participants is needed. For our user engagement observation, we use a sample size of 22, and in other studies,
we use a sample size of 32, combining the participants from the lab.

9.2 System Usability Scale

We assess application usability using the System Usability Scale (SUS) [95] during the post-study debriefing
questionnaires of all studies. The SUS prompted participants to evaluate the usability of the mindfulness meditation
app with statements such as: “I think that I would like to use the app frequently,” “I found the app unnecessarily
complex,” and “I felt confident using the app.” Responses are given on a scale from 1 (strongly disagree) to 5
(strongly agree). A score of 68 is considered average, while a score of 80 corresponds to an “A” rating [57, 79].
We hypothesize that the biosignal augmented condition (participants who are exposed to the respiration

biosignal feedback) would yield higher SUS scores in comparison to the control condition. We consider the
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Fig. 18. Impact of respiration biosignal feedback shows higher skill change and higher number of sessions with positive
changes in the experimental group than the control group.

participants from studies 2 and 3 for the SUS score. In total, scores from 32 participants (16 participants in the
biosignal augmented condition and 16 participants in the control condition) are used to prove our hypothesis.
An independent samples t-test (N=32) reveals that participants in the biosignal augmented condition report
significantly higher SUS scores (mean 84.43, SE 1.80) in comparison to those in the control condition (mean 74.04,
SE 3.49; t = 2.649; P = 0.013; Cohen’s d = 0.83; 95% CI = [2.37,18.43]).

The SUS analysis demonstrates statistically significant results with a p-value <0.05 and a high effect size of
0.83. It implies that incorporating respiration biosignal feedback into the app enhances user satisfaction and
perceived usability. Participants reported higher satisfaction and confidence when using the app with biosignal
feedback, suggesting that this feature contributes positively to the overall user experience. Improved usability is
crucial for sustained engagement with mindfulness applications, ultimately supporting better mindfulness skill
development, which has been shown to improve mental health outcomes.

In-Lab Study Results. Ten participants from study 2 who completed their sessions in the lab are divided into
experimental and control conditions. An independent samples t-test using all available data collected in lab
environment (study 2) revealed significantly higher user satisfaction in the biosignal augmented condition on
the SUS (Mean=85.0, SE=2.11) relative to control condition on the SUS (Mean=78.57, SE=1.99), t = -2.21, p =.04,
Cohen’s d = 0.67, 95% confidence interval (CI) = [-1.91, - 0.04]. While the sample size is small, the effect size
(Cohen’s d) indicates that participants may be more satisfied with their training experience when exposed to
respiration biosignal feedback.

In-The-Wild Study Results. Similar to the lab study, an independent samples t-test using all available data
from study 3 revealed significantly higher user satisfaction in the biosignal augmented condition on the SUS
(Mean=84.36, SE=3.83) relative to control condition on the SUS (Mean=67.08, SE=8.52), t = 2.02, p = 0.020, Cohen’s
d = 1.04, 95% confidence interval (CI) = [-1.31, 6.96]. The result is statistically significant with a p-value < 0.05
and has a high effect size of 1.04 (Cohen’s d), which indicates that exposure to respiration biosignal feedback
increases participants’ satisfaction in the wild.

9.3 Impact on Mindfulness Skill Change

We evaluate the impact of the respiration biosignal feedback chart on changes in mindfulness skills following
meditation. Figure 18a shows the average change in mindfulness skills for both the control and experimental
conditions. Participants who receive respiration biosignal feedback exhibit up to 2 times greater improvement in
mindfulness skills compared to the control group. In addition, Figure 18b indicates that the experimental group
experiences more sessions with a positive change in mindfulness skills. These findings suggest that respiration
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Fig. 19. Participants in the biosignal-augmented condition exhibited higher engagement with the app, completing more
sessions on average and spending more time in meditation.

biosignal feedback not only enhances app usability but also promotes ongoing improvements in mindfulness
skills as sessions progress.

Additionally, we conduct a t-test on the average change in mindfulness skills and a chi-square test on the number
of positive changes in mindfulness skills due to its categorical nature. The average change in concentration and
sensory clarity is highly significant with a large effect size, resulting in a p-value of 0.0006 and 0.026, respectively.
However, the average change in equanimity is not statistically significant, with a p-value of 0.64 and Cohen’s d
of 0.17. The change in concentration and sensory clarity also has a large effect size with Cohen’s d of 1.37 and
0.83, respectively, while the change in equanimity has a low effect size of 0.17.

On the contrary, the chi-square test shows that the number of sessions with positive changes in skills is highly
significant for all three skills of concentration, sensory clarity, and equanimity, with a p-value of 1.8 X 1078,
7.2%x 1077, and 7.2 X 1077 and a Cohen’s h of -0.86, -1.29, -1.29, respectively, showing large effect size.

9.4 User Engagement

In addition to assessing system usability, we also explore user engagement by providing an experimental group
of users with respiration biosignal feedback. Because all participants in Studies 1 and 2 were required to visit
the lab, we do not track their engagement data, as it would not accurately reflect real-world usage patterns. As
mentioned in section 4, participants from study 3 are divided into a biosignal augmented condition and a control
group, and they can complete as many sessions as they want in 21 days.

As shown in Figure 19, participants in the in-the-wild study who received biosignal-augmented feedback
completed an average of 10.08 meditation sessions, while the control group averaged 7.60 sessions. Those in
the biosignal-augmented condition spent more time meditating, averaging 111.07 minutes, while the control
group averaged 81.93 minutes. These trends highlight the potential of respiration biosignal feedback to enhance
engagement and encourage longer meditation sessions. A t-test (N=22) proves the results are approaching
significance, with a p-value of 0.11. The effect size is medium to large with a Cohen’s d of 0.71. A larger
longitudinal study with more participants will reinforce our hypothesis.

10 DISCUSSION, LIMITATION, AND FUTURE WORKS

This section highlights several key limitations and areas for improvement in our study, including using a custom
mindfulness scale and binary classification for skill detection. We also address challenges involving sample size,
device dependence, and environmental artifacts, all of which underscore the need for further investigation and
methodological refinements.
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10.1 Scale for Mindfulness Skills

One limitation of our study is the use of a custom 1-7 scale for participants to self-report their current levels
of concentration, sensory clarity, and equanimity. While this scale provided a concise method for capturing
mindfulness skills, it differs from standard validated scales commonly used in mindfulness research. Due to
the necessary brevity of our self-report questionnaires and considering that previous studies [61, 64] indicate
increases in self-reported mindfulness measures even in control conditions not exposed to mindfulness training
[77], we opt for this concise scale. In future work, we plan to incorporate more widely used and validated scales,
such as the Mindful Attention Awareness Scale (MAAS) [68] and the Toronto Mindfulness Scale (TMS) [55], to
enhance the validity and comparability of our findings.

10.2 Ground Truth and Practicality of Mindfulness Assessment

In this study, we use self-reported scores as the ground truth for training our mindfulness skills estimation model.
While self-report measures are subject to potential biases such as mood variability or subjective interpretation,
they remain the most practical and widely accepted method for evaluating mindfulness experiences in large-scale,
real-world studies.

More objective physiological assessments—such as EEG or fMRI—can offer higher precision in controlled
laboratory settings. However, these modalities are often cost-prohibitive, lack scalability, and may disrupt the
natural meditation experience. As such, they are not well-suited for mobile, in-the-wild mindfulness interventions.
Our approach aims to balance ecological validity and practical deployment by leveraging self-reports alongside
non-intrusive, smartphone-based sensing methods.

We acknowledge that self-reported scores alone may not fully capture the complexity of mindfulness. To
address this, future work will explore the integration of additional physiological markers, such as heart rate
variability (HRV) and galvanic skin response (GSR), to enable multi-modal validation. These extensions will help
enhance the robustness and generalizability of our mindfulness assessment framework in naturalistic settings.

10.3  Granularity of Mindfulness Skill Prediction

Our proposed model currently focuses on binary classification— predicting whether mindfulness skills are
improving or not during training. This binary approach, while useful, may not capture the full spectrum of
changes in mindfulness skills. In future work, we aim to extend the model to a multi-class classification framework
that can quantify varying degrees of change, such as large positive change, low positive change, no change, and
negative change in concentration, sensory clarity, and equanimity. By providing more granular predictions, we can
offer users a deeper understanding of their mindfulness progression, potentially enhancing the personalization
and effectiveness of the training.

10.4 Limited Scope of Respiratory Biosignals

While our proposed model for estimating respiration rate achieves an MAE of 1.6 BPM, outperforming state-of-
the-art models, it focuses solely on respiration rate estimation. Future research will aim to develop a more robust
model to further improve the accuracy of respiration rate estimation, particularly under varying conditions.
Moreover, we plan to expand our focus to estimate additional respiratory biomarkers, such as minute ventilation,
inhalation and exhalation durations, and respiratory variability. These biomarkers are vital for comprehensive
monitoring of user health and well-being [12, 80], and their inclusion could enhance the biofeedback provided to
users during mindfulness training.
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10.5 Exploring Alternative Modalities for Respiration and Mindfulness Estimation

While this study leverages smartphone accelerometer data to estimate respiration rate and track changes in
mindfulness skills during meditation, other physiological sensing modalities—such as EEG, audio, and galvanic
skin response (GSR)—were not explored. Recent work has demonstrated the feasibility of estimating respiration
from in-ear audio signals [6, 42, 92]. However, capturing respiration using external microphones presents
additional challenges, particularly in mindfulness contexts where breathing is slow, soft, and often inaudible.
This makes external audio sensing less reliable for detecting low breathing rates in real-world scenarios.

While in-ear microphones may have the capability to capture subtle breathing signals, microphone data access
from commercial earbuds (e.g., Samsung Galaxy Buds, Apple AirPods) is restricted. Moreover, although these
devices also include embedded IMUs, their sensor data are not publicly accessible—limiting their applicability for
research and large-scale deployment. Similarly, EEG and GSR, though capable of providing rich physiological
insights, require external sensors and more complex setups, reducing their practicality for everyday use.

In future work, we aim to explore the potential of external microphone audio to estimate both respiration
rate and mindfulness skills, while carefully evaluating its limitations under low-breathing-rate conditions. These
efforts will help determine whether complementary sensing modalities can enhance estimation accuracy without
compromising usability or scalability.

10.6 Long-Term Engagement and Future Directions

Our findings indicate that integrating the respiration feedback module enhances user engagement, as evidenced
by an increase in both the number of meditation sessions and the total minutes spent meditating. These results
suggest that providing real-time respiration biofeedback and mindfulness skill estimation may positively influence
user commitment to mindfulness practices. While this trend is promising and statistically significant, the current
study was conducted over a 21-day period and represents an initial step toward understanding engagement
dynamics.

To evaluate the sustainability of this effect, a longitudinal study is necessary. In future work, we plan to conduct
an extended 6—12 month deployment with a larger and more diverse participant pool. This will allow us to
assess long-term user engagement and determine whether the initial increase in usage is maintained over time.
Additionally, future studies will incorporate more controlled experimental designs to better isolate the impact
of biosignal feedback from other confounding variables. These efforts will help strengthen the evidence for the
role of physiological feedback in enhancing digital mindfulness interventions and inform the design of scalable,
personalized mindfulness tools.

10.7 Sample Size and Participant Diversity

A limitation of our study is the relatively small sample size, which includes only 261 sessions. While our findings
are promising, the limited number of participants may affect the generalizability of the results. Future studies
should include a larger sample to validate the findings across different populations, ages, and backgrounds.

10.8 Device and Sensor Limitations

Our respiration rate estimation algorithm and mindfulness skill detection model are developed using data collected
from specific devices, namely the iPhone X and Hexoskin smart shirts. The reliance on these specific devices
may limit the generalizability of our methods to other smartphones or wearable devices with different sensor
characteristics. Future work should explore the applicability of our algorithms across a wider range of devices
and platforms to enhance their usability and accessibility.
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10.9 Environmental and Movement Artifacts

Although our algorithm includes steps for motion artifact removal, continuous user movement or improper
device placement can still impact the accuracy of respiration rate estimation and mindfulness skill detection. In
real-world settings, uncontrolled environmental factors and varying levels of user compliance may introduce
additional noise and artifacts. Future research should focus on enhancing the robustness of the algorithms to
handle such variability, possibly through adaptive filtering techniques or machine learning models that can
account for diverse real-world conditions.

11 CONCLUSION

This study demonstrates the significant potential of integrating respiration biosignal feedback into smartphone-
based mindfulness training apps. Our respiration rate estimation algorithm outperformed existing methods in
both accuracy and reliability, particularly excelling at detecting slow respiration rates typical during mindfulness
meditation. By maintaining a low MAE of 1.6 for various respiration rates, our algorithm ensures effective
biofeedback, which is crucial for mindfulness practices. Additionally, our deep learning model for mindfulness
skill estimation using accelerometer data achieved robust performance, with F1 scores of 82% for concentration,
80% for sensory clarity, and 84% for equanimity. Our model surpassed other models that are based solely on
respiration rate, highlighting the value of accelerometer data in capturing subtle physiological and behavioral cues
associated with mindfulness skills. Participants who receive biosignal feedback reported higher satisfaction with
using the app. These findings suggest that incorporating biosignal feedback, combined with accelerometer-based
mindfulness estimation, can significantly enhance the effectiveness of digital mindfulness interventions. By
harnessing ubiquitous technology and sophisticated data analysis, we can create effective, scalable solutions to
support mindfulness practice and mental health in diverse populations.
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